Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Physiol Biochem ; 33(2): 344-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24525903

RESUMO

BACKGROUND/AIMS: Fatty acids are the main energy stores and the major membrane components of the cells. In the hepatocyte, fatty acids are esterified to triacylglycerols (TAGs) and stored in lipid droplets (LDs). The lipid lowering action of 3,5-diiodo-L-thyronine (T2) on an in vitro model of hepatosteatosis was investigated in terms of fatty acid and protein content of LDs, lipid oxidation and secretion. METHODS: FaO cells were exposed to oleate/palmitate, then treated with T2. RESULTS: T2 reduced number and size of LDs, and modified their acyl composition by decreasing the content of saturated (SFA) vs monounsaturated (MUFA) fatty acids thus reversing the SFA/MUFA ratio. The expression of the LD-associated proteins adipose differentiation-related protein (ADRP), oxidative tissue-enriched PAT protein (OXPAT), and adipose triglyceride lipase (ATGL) was increased in 'steatotic' cells and further up-regulated by T2. Moreover, T2 stimulated the mitochondrial oxidation by up-regulating carnitine-palmitoyl-transferase (CPT1), uncoupling protein 2 (UCP2) and very long-chain acyl-coenzyme A dehydrogenase (VLCAD). CONCLUSIONS: T2 leads to mobilization of TAGs from LDs and stimulates mitochondrial oxidative metabolism of fatty acids, in particular of SFAs, and thus enriches of MUFAs the LDs. This action may protect the hepatocyte from excess of SFAs that are more toxic than MUFAs.


Assuntos
Di-Iodotironinas/toxicidade , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Modelos Biológicos , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Monoinsaturados/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Lipase/biossíntese , Mitocôndrias Hepáticas/patologia , Proteínas Musculares/biossíntese , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Oxirredução , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Perilipina-5 , Ratos
2.
Food Chem Toxicol ; 90: 84-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26854922

RESUMO

Excess ethanol consumption and fatty acid intake lead to a cumulative effect on liver steatosis through still unclear mechanisms. This study aimed to characterize the lipid homoeostasis alterations under the exposure of hepatocytes to ethanol alone or combined with fatty acids. FaO hepatoma cells were incubated in the absence (C) or in the presence of 100 mM ethanol (EtOH) or 0.35 mM oleate/palmitate (FFA) alone or in the combination (FFA/EtOH). Content of intra- and extra-cellular triglycerides (TAGs) and of lipid droplets (LDs), expression of lipogenic and lipolytic genes, and oxidative stress-related parameters were evaluated. Exposure to either FFAs or EtOH given separately led to steatosis which was augmented when they were combined. Our results show that FFA/EtOH: (i) increased the LD number, but reduced their size compared to separate treatments; (ii) up-regulated PPARγ and SREBP-1c and down-regulated sirtuin-1 (SIRT1); (iii) impaired FFA oxidation; (iv) did not change lipid secretion and oxidative stress. Our findings indicate that one of the major mechanisms of the metabolic interference between ethanol and fat excess is the impairment of FFA oxidation, in addition to lipogenic pathway stimulation. Interestingly, ethanol combined with FFAs led to a shift from macrovesicular to microvesicular steatosis that represents a more dangerous condition.


Assuntos
Etanol/farmacologia , Ácidos Graxos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Fígado Gorduroso , Homeostase , Ratos
3.
Front Physiol ; 6: 418, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26793120

RESUMO

Adipose tissue, dietary lipids and de novo lipogenesis are sources of hepatic free fatty acids (FFAs) that are stored in lipid droplets (LDs) as triacylglycerols (TAGs). Destiny of TAGs stored in LDs is determined by LD proteomic equipment. When adipose triglyceride lipase (ATGL) localizes at LD surface the lipid mobilization is stimulated. In this work, an in vitro model of cultured rat hepatocytes mimicking a mild steatosis condition was used to investigate the direct lipid-lowering action of iodothyronines, by focusing, in particular, on LD-associated proteins, FFA oxidation and lipid secretion. Our results demonstrate that in "steatotic" hepatocytes iodothyronines reduced the lipid excess through the recruitment of ATGL on LD surface, and the modulation of the LD-associated proteins Rab18 and TIP47. As an effect of ATGL recruitment, iodothyronines stimulated the lipid mobilization from LDs then followed by the up-regulation of carnitine-palmitoyl-transferase (CPT1) expression and the stimulation of cytochrome-c oxidase (COX) activity that seems to indicate a stimulation of mitochondrial function. The lipid lowering action of iodothyronines did not depend on increased TAG secretion. On the basis of our data, ATGL could be indicated as an early mediator of the lipid-lowering action of iodothyronines able to channel hydrolyzed FFAs toward mitochondrial beta-oxidation rather than secretion.

4.
J Physiol Biochem ; 70(2): 341-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24481563

RESUMO

Excess fat accumulation renders the liver more vulnerable to ethanol, but it is still unclear how alcohol enhances lipid dysmetabolism and oxidative stress in a pre-existing steatosis condition. The effects produced by binge ethanol consumption in the liver of male Wistar rats fed a standard (Ctrl) or a high-fat diet HFD were compared. The liver status was checked through tissue histology and standard serum parameters. Alteration of hepatic lipid homeostasis and consequent oxidative unbalance were assessed by quantifying the mRNA expression of the lipid-regulated peroxisome proliferator-activated receptors (PPARs), of the cytochromes CYP2E1 and CYP4A1, and of some antioxidant molecules such as the metallothionein isoforms MT1 and MT2 and the enzymes catalase and superoxide dismutase. The number of adipose differentiation-related protein (ADRP)-positive lipid droplets (LDs) was evaluated by immunohistochemical staining. As a response to the double insult of diet and ethanol the rat liver showed: (1) a larger increase in fat accumulation within ADRP-positive LDs; (2) stimulation of lipid oxidation in the attempt to limit excess fat accumulation; (3) induction of antioxidant proteins (MT2, in particular) to protect the liver from the ethanol-induced overproduction of oxygen radicals. The data indicate an increased susceptibility of fatty liver to ethanol and suggest that the synergistic effect of diet and ethanol on lipid dysmetabolism might be mediated, at least in part, by PPARs and cytochromes CYP4A1 and CYP2E1.


Assuntos
Etanol/toxicidade , Homeostase/efeitos dos fármacos , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Sequência de Bases , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP4A/metabolismo , Primers do DNA , Modelos Animais de Doenças , Etanol/administração & dosagem , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real
5.
Drug Alcohol Depend ; 143: 112-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25107314

RESUMO

BACKGROUND: Oxidative stress is implicated in pathogenesis of alcoholic liver disease (ALD). This study investigated the possible correlation among the erythrocyte indices of oxidative stress, the leukocyte panels of antioxidant proteins (metallothioneins), the serum biochemical parameters and the liver steatosis grade. METHODS: A total of 118 cases including 60 alcoholic subjects and 58 controls were enrolled. All the alcoholic subjects were screened for body mass index (BMI), liver steatosis, and blood chemistry and serology. The level of oxidative stress and oxidative stress-related parameters were measured in the blood and correlated with clinical findings. RESULTS: Alcoholic subjects showed higher BMI, moderate/severe hepatic steatosis, increase in the levels of triglycerides, cholesterol, glucose, γ-glutamyl-transpeptidase (GGT), alanine aminotransferase (ALT), bilirubin, alpha 1 and beta 2 globulins, iron and a decrease in the levels of aspartate aminotransferase (AST) and beta 1 globulin with respect to the reference values. Moreover, alcoholic subjects showed: (i) an increase in Thiobarbituric Acid Reactive Substance (TBARS) content representing a good estimation of global oxidative stress; (ii) a stimulation of the activities of the antioxidant enzymes catalase and SOD; (iii) a modulation of expression of metallothioneins, with a down-regulation of MT-1A and an up-regulation of MT-1E isoforms. CONCLUSIONS: Our data suggest that alcoholism is strongly associated with altered pattern of blood metallothioneins; this parameter combined with the score calculated by an ad hoc implemented algorithm (HePaTest) could offer a non-invasive alternative approach for evaluating alcohol-related damages and could be used in follow-up of alcoholic patients.


Assuntos
Alcoolismo/sangue , Antioxidantes/metabolismo , Hepatopatias Alcoólicas/sangue , Estresse Oxidativo , Adolescente , Adulto , Alcoolismo/complicações , Estudos de Casos e Controles , Índices de Eritrócitos , Fígado Gorduroso/sangue , Fígado Gorduroso/complicações , Humanos , Leucócitos/metabolismo , Peroxidação de Lipídeos , Hepatopatias Alcoólicas/complicações , Hepatopatias Alcoólicas/diagnóstico por imagem , Masculino , Metalotioneína/biossíntese , Pessoa de Meia-Idade , Ultrassonografia , Regulação para Cima , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA