Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Sci Technol ; 54(23): 15202-15214, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200604

RESUMO

Irrigation water or soil contaminated with per- and polyfluoroalkyl substances (PFASs) raises concerns among regulators tasked with protecting human health from potential PFAS-contaminated food crops, with several studies identifying crop uptake as an important exposure pathway. We estimated daily dietary exposure intake of individual PFASs in vegetables for children and adults using Monte Carlo simulation in a tiered stochastic modeling approach: exposures were the highest for young children (1-2 years > adults > 3-5 years > 6-11 years > 12-19 years). Using the lowest available human health toxicity reference values (RfDs) and no additional exposure, estimated fifth percentile risk-based threshold concentrations in irrigation water were 38 ng/L (median 180 ng/L) for perfluorooctanoate (PFOA) and 140 ng/L (median 850 ng/L) for perfluorooctane sulfonate (PFOS). Thus, consumption of vegetables irrigated with PFAS-impacted water that meets the current 70 ng/L of PFOA and PFOS U.S. Environmental Protection Agency's lifetime health advisory for drinking water may or may not be protective of vegetable exposures to these contaminants. Hazard analyses using real-world PFAS-contaminated groundwater data for a hypothetical farm showed estimated exposures to most PFASs exceeding available or derived RfDs, indicating water-to-crop transfer is an important exposure pathway for communities with PFAS-impacted irrigation water.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Adulto , Ácidos Alcanossulfônicos/análise , Caprilatos/análise , Criança , Pré-Escolar , Água Potável/análise , Fluorocarbonos/análise , Humanos , Verduras , Poluentes Químicos da Água/análise
2.
Environ Toxicol Chem ; 40(12): 3234-3260, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34325493

RESUMO

A Society of Environmental Toxicology and Chemistry (SETAC) Focused Topic Meeting (FTM) on the environmental management of per- and polyfluoroalkyl substances (PFAS) convened during August 2019 in Durham, North Carolina (USA). Experts from around the globe were brought together to critically evaluate new and emerging information on PFAS including chemistry, fate, transport, exposure, and toxicity. After plenary presentations, breakout groups were established and tasked to identify and adjudicate via panel discussions overarching conclusions and relevant data gaps. The present review is one in a series and summarizes outcomes of presentations and breakout discussions related to (1) primary sources and pathways in the environment, (2) sorption and transport in porous media, (3) precursor transformation, (4) practical approaches to the assessment of source zones, (5) standard and novel analytical methods with implications for environmental forensics and site management, and (6) classification and grouping from multiple perspectives. Outcomes illustrate that PFAS classification will continue to be a challenge, and additional pressing needs include increased availability of analytical standards and methods for assessment of PFAS and fate and transport, including precursor transformation. Although the state of the science is sufficient to support a degree of site-specific and flexible risk management, effective source prioritization tools, predictive fate and transport models, and improved and standardized analytical methods are needed to guide broader policies and best management practices. Environ Toxicol Chem 2021;40:3234-3260. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecotoxicologia , Fluorocarbonos , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , North Carolina
3.
Sci Total Environ ; 407(3): 1035-47, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19004475

RESUMO

As part of a comprehensive ecological risk assessment on a broad range of species, the potential for adverse effects in birds was evaluated at a chromate ore processing residue disposal site, Study Area 7, located at the confluence of the Lower Hackensack River, Passaic River, and Upper Newark Bay. Although detection of elevated concentrations of total chromium in sediment prompted the study, it was also necessary to consider potential risks related to other chemicals present in elevated concentrations due to widespread anthropogenic activities in Upper Newark Bay and its watershed. U.S. Army Corps of Engineers' TrophicTrace software was used to predict exposure to avian receptors using measured concentrations of chemicals in sediment, measured concentrations of chemicals in benthic invertebrates, and measured site physicochemical parameters. The TrophicTrace model was improved as part of the Study Area 7 ecological risk assessment to account for (1) incidental ingestion of sediment by dabbling and diving birds, (2) area use factors for spatial overlap of wide-ranging fish species and piscivorous birds, (3) spatially-explicit utilization of the site by birds with a variety of foraging strategies, and (4) temporal patterns of site utilization by migratory species. The ecological risk assessment demonstrated that chromium in sediment does not pose unacceptable hazards to avian receptors. Potentially unacceptable hazards were indicated for several organic chemicals (i.e., pesticides, polychlorinated biphenyls, and dioxins/furans), with hazard quotients highest for Upper Newark Bay reference conditions, reflecting potential widespread chemical impacts to the estuary. The modifications to TrophicTrace conducted for this assessment may be prudent and applicable for improving the accuracy and realism of other assessments involving avian receptors exposed to chemicals via contaminated sediment and transfer through the food web.


Assuntos
Aves , Cromo/análise , Água Doce/análise , Poluentes Químicos da Água/análise , Ração Animal , Migração Animal , Animais , Aves/fisiologia , DDT/análise , Diclorodifenil Dicloroetileno/análise , Diclorodifenildicloroetano/análise , Ecossistema , Peixes , Sedimentos Geológicos/análise , Humanos , Invertebrados , New Jersey , Fenômenos Fisiológicos Vegetais , Bifenilos Policlorados/análise , Densidade Demográfica , População Urbana
4.
Chemosphere ; 201: 335-341, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29525662

RESUMO

Releases of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) associated with Aqueous Film Forming Foams (AFFFs) have the potential to impact on-site and downgradient aquatic habitats. Dietary exposures of aquatic-dependent birds were modeled for seven PFASs (PFHxA, PFOA, PFNA, PFDA, PFHxS, PFOS, and PFDS) using five different scenarios based on measurements of PFASs obtained from five investigations of sites historically-impacted by AFFF. Exposure modeling was conducted for four avian receptors representing various avian feeding guilds: lesser scaup (Aythya affinis), spotted sandpiper (Actitis macularia), great blue heron (Ardea herodias), and osprey (Pandion haliaetus). For the receptor predicted to receive the highest PFAS exposure (spotted sandpiper), model-predicted exposure to PFOS exceeded a laboratory-based, No Observed Adverse Effect Level exposure benchmark in three of the five model scenarios, confirming that risks to aquatic-dependent avian wildlife should be considered for investigations of historic AFFF releases. Perfluoroalkyl sulfonic acids (PFHxS, PFOS, and PFDS) represented 94% (on average) of total PFAS exposures due to their prevalence in historical AFFF formulations, and increased bioaccumulation in aquatic prey items and partitioning to aquatic sediment relative to perfluoroalkyl carboxylic acids. Sediment-associated PFASs (rather than water-associated PFASs) were the source of the highest predicted PFAS exposures, and are likely to be very important for understanding and managing AFFF site-specific ecological risks. Additional considerations for research needs and site-specific ecological risk assessments are discussed with the goal of optimizing ecological risk-based decision making at AFFF sites and prioritizing research needs.


Assuntos
Ácidos Alcanossulfônicos/análise , Aves , Ecossistema , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Animais , Ácidos Carboxílicos , Água/química
5.
Chemosphere ; 63(1): 58-63, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16324732

RESUMO

Tubifex tubifex metabolizes 2,4,6-trinitrotoluene (TNT) to 2-amino-4,6-dinitrotoluene (2ADNT) and 4-amino-2,6-dinitrotoluene (4ADNT). Elimination rates of metabolically-generated ADNTs are low compared to ADNTs absorbed directly from water, suggesting that metabolically-generated ADNTs may be bound or sequestered within tissue and therefore less available for elimination. A solid phase microextraction (SPME) technique was used to extract ADNTs from T. tubifex tissue to investigate the recalcitrance of metabolically-generated ADNTs. As SPME is a gentle, non-depletive, equilibrium sampling technique useful for measuring "available" organic compounds, we hypothesized that metabolically-generated ADNTs would be less extractable than absorbed ADNTs. T. tubifex were exposed to two scenarios to generate tissues containing absorbed ADNTs and metabolically-generated ADNTs. Tissue was then homogenized in a neutral buffer solution. Polyacrylate-coated (PA) SPME fibers were deployed and agitated in tissue homogenates to measure available ADNTs. Extractability of ADNTs from tissue containing metabolically-generated ADNTs was significantly less than expected: 50-60% based on the theoretical fiber-water partition ratio. Extractability of absorbed ADNTs was significantly higher (81-90%), and not significantly different than expected. The lower SPME extractability of metabolically-generated ADNTs may stem from the unavailability of metabolically-generated ADNTs sequestered in tissue or bound to tissue macromolecules during metabolism of TNT to ADNT. Tissue extractions using SPMEs may be able to estimate bound organic residues in tissue and serve to indicate the toxicological bioavailability of tissue-associated organic compounds.


Assuntos
Compostos de Anilina/análise , Oligoquetos/fisiologia , Poluentes Químicos da Água/análise , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Animais , Disponibilidade Biológica , Distribuição Tecidual , Poluentes Químicos da Água/metabolismo
6.
Integr Environ Assess Manag ; 12(1): 135-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26436822

RESUMO

Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.


Assuntos
Ecotoxicologia , Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade , Cadeia Alimentar , Compostos Orgânicos/toxicidade , Animais , Biota , Ecossistema , Poluentes Ambientais/análise , Compostos Orgânicos/análise , Medição de Risco
7.
Environ Toxicol Chem ; 24(5): 1059-66, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16110982

RESUMO

Disposable solid-phase microextraction fibers (SPMEs) were used to measure the availability of 2,4,6-trinitrotoluene (TNT) and its two primary transformation products, 2-amino-4,6-dinitrotoluene (2ADNT) and 4-amino-2,6-dinitrotoluene (4ADNT). The SPMEs (85-microm polyacrylate) and sediment-dwelling oligochaetes (Tubifex tubifex) were exposed to TNT-spiked sediment, to TNT-spiked sediment amended with activated carbon, and to TNT-, 2ADNT-, and 4ADNT-spiked water. Sediment concentration was a poor predictor of bioavailability in unamended and carbon-amended sediments (r2 = 0.14-0.73) The activated carbon amendment reduced the bioavailability of compounds in carbon-amended sediment, causing the relationships between Tubifex concentrations and sediment concentrations to differ significantly between unamended and carbon-amended sediment for all compounds. In contrast, SPME TNT concentrations predicted Tubifex TNT concentrations (r2 = 0.54-0.79). and regression models did not differ significantly among the three TNT-spiked matrices. The SPME 2ADNT and 4ADNT concentrations also were predictive of Tubifex 2ADNT and 4ADNT concentrations (r2 = 0.44-0.90). Relationships between Tubifex concentrations and SPME concentrations were the same between unamended and carbon-amended TNT-spiked sediments for 2ADNT and 4ADNT; however, the relationship in sediment (pooled data) differed from the relationship found in 2ADNT- and 4-ADNT-spiked water. The SPMEs provided carbon amendment-independent measures of ADNT availability in sediment and matrix-independent measures of TNT availability among the three matrices. The SPMEs show promise for predicting bioavailable organic compounds in sediment and water.


Assuntos
Água Doce/química , Sedimentos Geológicos/química , Oligoquetos/metabolismo , Trinitrotolueno/análise , Poluentes Químicos da Água/análise , Animais , Disponibilidade Biológica , Carbono/química , Monitoramento Ambiental , Trinitrotolueno/metabolismo , Poluentes Químicos da Água/metabolismo
8.
Environ Toxicol Chem ; 34(1): 6-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25319944

RESUMO

Sediment quality values (SQV) are commonly used-and misused-to characterize the need for investigation, understand causes of observed effects, and derive management strategies to protect benthic invertebrates from direct toxic effects. The authors compiled more than 40 SQVs for mercury, nearly all of which are "co-occurrence" SQVs derived from databases of paired chemistry and benthic invertebrate effects data obtained from field-collected sediment. Co-occurrence SQVs are not derived in a manner that reflects cause-effect, concentration-response relationships for individual chemicals such as mercury, because multiple potential stressors often co-occur in the data sets used to derive SQVs. The authors assembled alternative data to characterize mercury-specific effect thresholds, including results of 7 laboratory studies with mercury-spiked sediments and 23 studies at mercury-contaminated sites (e.g., chloralkali facilities, mercury mines). The median (± interquartile range) co-occurrence SQVs associated with a lack of effects (0.16 mg/kg [0.13-0.20 mg/kg]) or a potential for effects (0.88 mg/kg [0.50-1.4 mg/kg]) were orders of magnitude lower than no-observed-effect concentrations reported in mercury-spiked toxicity studies (3.3 mg/kg [1.1-9.4 mg/kg]) and mercury site investigations (22 mg/kg [3.8-66 mg/kg]). Additionally, there was a high degree of overlap between co-occurrence SQVs and background mercury levels. Although SQVs are appropriate only for initial screening, they are commonly misused for characterizing or managing risks at mercury-contaminated sites. Spiked sediment and site data provide more appropriate and useful alternative information for characterization and management purposes. Further research is recommended to refine mercury effect thresholds for sediment that address the bioavailability and causal effects of mercury exposure. Environ Toxicol Chem 2015;34:6-21. © 2014 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Sedimentos Geológicos/química , Invertebrados/efeitos dos fármacos , Compostos de Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Animais , Compostos de Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Poluentes Químicos da Água/toxicidade
9.
Aquat Toxicol ; 69(3): 199-213, 2004 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-15276327

RESUMO

We examined the toxicokinetics and metabolism of 2,4,6-trinitirotoluene (TNT) and four of its major reduced metabolites (2-amino-4,6-dinitrotoluene (2ADNT), 4-amino-2,6-dinitrotoluene (4ADNT), and 2,4-diamino-6-nitrotoluene (2,4DANT)) in the freshwater, aquatic oligochaete Tubifex tubifex exposed to spiked, reconstituted water. In uptake experiments with each compound, steady state concentrations were reached within 1h, and all absorbed compounds were completely eliminated in 0-3 h. The appearance of 2ADNT and 4ADNT (from metabolism of absorbed TNT) was five times slower, reaching 95% of steady state in 14.2-16.1h. Approximately, 82% of absorbed TNT was metabolized to ADNTs; metabolism to 4ADNT was favored over 2ADNT by a factor of 3. No further metabolism of ADNTs to DANTs was detected. After a loss of 29-50% of metabolically-generated ADNTs during the first hour of the TNT depuration experiment, Tubifex ADNT concentrations remained constant throughout the 53h depuration period. This suggests differences between the toxicokinetics of absorbed ADNTs and the toxicokinetics of metabolically-generated ADNTs. Experiments using radiolabeled (14C) TNT revealed that only 15-47% of 14C-TNT equivalents were identified as TNT, 2ADNT, or 4ADNT, indicating significant metabolism and/or binding to biomolecules. Of unidentified 14C-TNT equivalents, 28-38% remained unextractable. Both unextractable and extractable unidentified substances increased throughout the 54 h 14C-TNT uptake experiment. The unidentified portions of the radiolabel were not eliminated during a 53-h depuration experiment. Bioconcentration factors (BCFs) for HPLC-detectable compounds were found to be linearly related to log K(OW) (r2 = 0.9963). BCFs for 2ADNT, 4ADNT, and 2,4DANT were 10.22, 12.41, and 2.75, respectively. The BCF for TNT was 12.25, based on a molar sum of total TNT and its metabolites (SigmaTNT + 2ADNT + 4ADNT), and 2.53 based on TNT only. Compound hydrophobicity predicted the toxicokinetics and bioconcentration of compounds absorbed from water, however, the large discrepancy between the toxicokinetics of absorbed versus metabolically-generated ADNTs and the bioconcentration and toxicokinetics of the unidentified substances warrant further investigation.


Assuntos
Oligoquetos/metabolismo , Trinitrotolueno/metabolismo , Trinitrotolueno/farmacocinética , Análise de Variância , Animais , Radioisótopos de Carbono , Cromatografia Líquida de Alta Pressão , Dinitrobenzenos/metabolismo , Água Doce
10.
Chemosphere ; 49(1): 1-7, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12243324

RESUMO

We investigated a method to isolate toxicologically relevant Cd in earthworms (Eisenia fetida) exposed in a 14-d Cd bioaccumulation study. A procedure involving acid insoluble ash (AIA) content was combined with homogenization and centrifugation techniques to divide total earthworm Cd burdens into supernatant (metallothionein-bound), pellet (toxicologically active), and soil-associated Cd fractions. Whereas the supernatant fraction of the earthworm digests increased linearly throughout the exposure period (from approximately 0 to 3.59 mmol/kg), the pellet fraction reached a steady-state concentration (95% CI) of 1.2 (0.9-1.4) mmol/kg, suggesting the ability of the metallothionein detoxification system to sequester incoming Cd. The AIA method was useful for correcting earthworm Cd concentrations for ingested soil-associated Cd and observing soil ingestion, which was suppressed in Cd-spiked artificial soil (1.06 (0.57-1.55)%) compared to controls (17.25 (14.36-20.15)%). These methods may be useful in investigating soil ingestion and Cd uptake and detoxification in earthworms.


Assuntos
Cádmio/análise , Monitoramento Ambiental/métodos , Oligoquetos/química , Poluentes do Solo/análise , Animais , Cádmio/metabolismo , Cádmio/toxicidade , Fracionamento Químico , Técnicas de Química Analítica/métodos , Inativação Metabólica , Oligoquetos/metabolismo , Poluentes do Solo/metabolismo , Toxicologia/métodos
11.
Environ Toxicol Chem ; 23(1): 141-9, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14768878

RESUMO

Previous investigations of the ecotoxicity of TNT in spiked sediments noted the rapid degradation and disappearance of the toxicant, yet little is understood regarding the effects of this process on toxicity and subsequent derivation of toxicity reference values. We conducted environmental fate studies and 28-d sediment toxicity tests with benthic oligochaete worms (Tubifex tubifex) with sediments spiked at three different TNT concentrations (440, 1,409, and 4,403 nmol/g dry wt) aged for 1, 8, and 29 d. Because of rapid degradation of TNT, disappearance of degradation products, and partitioning to overlying water, only 25 to 40% of the added nitroaromatic mass balance was associated with sediment immediately after spiking. Lethal toxicity decreased with aging time and was best described by measured sediment nitroaromatic concentrations (sum of TNT and degradation products) at the beginning of exposure, with a median lethal concentration of nitroaromatic compounds of 184 nmol/g dry weight. To accurately describe the ephemeral exposure doses of TNT and its degradation products during toxicity tests with spiked sediments, we suggest that sediments should be aged at least 8 to 14 d after spiking, exposure should be based on measured sediment concentrations or chemical measures of availability, exchange of overlying water should be avoided or minimized, and short-term toxicity tests should be considered.


Assuntos
Exposição Ambiental , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Sedimentos Geológicos/química , Oligoquetos , Trinitrotolueno/farmacocinética , Trinitrotolueno/toxicidade , Animais , Disponibilidade Biológica , Reprodutibilidade dos Testes
12.
Integr Environ Assess Manag ; 8(1): 85-97, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21538835

RESUMO

Recent technical workgroups have concluded that trophic magnification factors (TMFs) are useful in characterizing the bioaccumulation potential of a chemical, because TMFs provide a holistic measure of biomagnification in food webs. The objectives of this article are to provide a critical analysis of the application of TMFs for regulatory screening for bioaccumulation potential, and to discuss alternative methods for supplementing TMFs and assessing biomagnification in cases where insufficient data are available to determine TMFs. The general scientific consensus is that chemicals are considered bioaccumulative if they exhibit a TMF > 1. However, comparison of study-derived TMF estimates to this threshold value should be based on statistical analyses such that variability is quantified and false positive and false negative errors in classification of bioaccumulation potential are minimized. An example regulatory decision-making framework is presented to illustrate the use of statistical power analyses to minimize assessment errors. Suggestions for considering TMF study designs and TMFs obtained from multiple studies are also provided. Alternative bioaccumulation metrics are reviewed for augmenting TMFs and for substituting in situations in which field data for deriving TMFs are unavailable. Field-derived, trophic level-normalized biomagnification factors (BMF(TL) s), biota-sediment accumulation factors (BSAF(TL) s), and bioaccumulation factors (BAF(TL) s) are recommended if data are available, because these measures are most closely related to the biomagnification processes characterized by TMFs. Field- and laboratory-derived BAFs and bioconcentration factors are generally less accurate in predicting biomagnification. However, bioconcentration factors and BAFs remain useful for characterizing bioaccumulation as a result of the transfer of chemicals from abiotic environmental compartments to lower trophic levels. Modeling that incorporates available laboratory and field data should also be considered for augmenting assessments of bioaccumulation potential. Modeling can provide a TMF-focused assessment for new or unreleased chemicals in the absence of field data by estimating TMF values and theoretical relationships between physical-chemical properties and TMF values (quantitative structure-activity relationships). An illustration of the use of physicochemical properties for estimating TMFs is provided. Overall, TMFs provide valuable information regarding bioaccumulation potential and should be incorporated into regulatory decision making following the suggestions outlined in this article.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Poluentes Ambientais/metabolismo , Cadeia Alimentar , Medição de Risco/métodos , Animais , Ecossistema , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade
13.
Integr Environ Assess Manag ; 8(1): 64-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21674770

RESUMO

Recent reviews by researchers from academia, industry, and government have revealed that the criteria used by the Stockholm Convention on persistent organic pollutants under the United Nations Environment Programme are not always able to identify the actual bioaccumulative capacity of some substances, by use of chemical properties such as the octanol-water partitioning coefficient. Trophic magnification factors (TMFs) were suggested as a more reliable tool for bioaccumulation assessment of chemicals that have been in commerce long enough to be quantitatively measured in environmental samples. TMFs are increasingly used to quantify biomagnification and represent the average diet-to-consumer transfer of a chemical through food webs. They differ from biomagnification factors, which apply to individual species and can be highly variable between predator-prey combinations. The TMF is calculated from the slope of a regression between the chemical concentration and trophic level of organisms in the food web. The trophic level can be determined from stable N isotope ratios (δ(15) N). In this article, we give the background for the development of TMFs, identify and discuss impacts of ecosystem and ecological variables on their values, and discuss challenges and uncertainties associated with contaminant measurements and the use of δ(15) N for trophic level estimations. Recommendations are provided for experimental design, data treatment, and statistical analyses, including advice for users on reporting and interpreting TMF data. Interspecies intrinsic ecological and organismal properties such as thermoregulation, reproductive status, migration, and age, particularly among species at higher trophic levels with high contaminant concentrations, can influence the TMF (i.e., regression slope). Following recommendations herein for study design, empirical TMFs are likely to be useful for understanding the food web biomagnification potential of chemicals, where the target is to definitively identify if chemicals biomagnify (i.e., TMF > or < 1). TMFs may be less useful in species- and site-specific risk assessments, where the goal is to predict absolute contaminant concentrations in organisms in relation to threshold levels.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Poluentes Ambientais/metabolismo , Cadeia Alimentar , Medição de Risco/métodos , Animais , Ecossistema , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Marcação por Isótopo , Modelos Biológicos
14.
Integr Environ Assess Manag ; 7(4): 513-41, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21793199

RESUMO

The primary aim of this article is to provide an overview of perfluoroalkyl and polyfluoroalkyl substances (PFASs) detected in the environment, wildlife, and humans, and recommend clear, specific, and descriptive terminology, names, and acronyms for PFASs. The overarching objective is to unify and harmonize communication on PFASs by offering terminology for use by the global scientific, regulatory, and industrial communities. A particular emphasis is placed on long-chain perfluoroalkyl acids, substances related to the long-chain perfluoroalkyl acids, and substances intended as alternatives to the use of the long-chain perfluoroalkyl acids or their precursors. First, we define PFASs, classify them into various families, and recommend a pragmatic set of common names and acronyms for both the families and their individual members. Terminology related to fluorinated polymers is an important aspect of our classification. Second, we provide a brief description of the 2 main production processes, electrochemical fluorination and telomerization, used for introducing perfluoroalkyl moieties into organic compounds, and we specify the types of byproducts (isomers and homologues) likely to arise in these processes. Third, we show how the principal families of PFASs are interrelated as industrial, environmental, or metabolic precursors or transformation products of one another. We pay particular attention to those PFASs that have the potential to be converted, by abiotic or biotic environmental processes or by human metabolism, into long-chain perfluoroalkyl carboxylic or sulfonic acids, which are currently the focus of regulatory action. The Supplemental Data lists 42 families and subfamilies of PFASs and 268 selected individual compounds, providing recommended names and acronyms, and structural formulas, as well as Chemical Abstracts Service registry numbers.


Assuntos
Meio Ambiente , Fluorocarbonos/análise , Fluorocarbonos/classificação , Terminologia como Assunto , Animais , Fluorocarbonos/química , Humanos , Manufaturas/análise , Manufaturas/classificação
15.
Environ Sci Technol ; 42(4): 995-1003, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18351063

RESUMO

Perfluorinated acids, including perfluorinated carboxylates (PFCAs), and perfluorinated sulfonates (PFASs), are environmentally persistent and have been detected in a variety of wildlife across the globe. The most commonly detected PFAS, perfluorooctane sulfonate (PFOS), has been classified as a persistent and bioaccumulative substance. Similarities in chemical structure and environmental behavior of PFOS and the PFCAs that have been detected in wildlife have generated concerns about the bioaccumulation potential of PFCAs. Differences between partitioning behavior of perfluorinated acids and persistent lipophilic compounds complicate the understanding of PFCA bioaccumulation and the subsequent classification of the bioaccumulation potential of PFCAs according to existing regulatory criteria. Based on available research on the bioaccumulation of perfluorinated acids, five key points are highlighted in this review: (1) bioconcentration and bioaccumulation of perfluorinated acids are directly related to the length of each compound's fluorinated carbon chain; (2) PFASs are more bioaccumulative than PFCAs of the same fluorinated carbon chain length; (3) PFCAs with seven fluorinated carbons or less (perfluorooctanoate (PFO) and shorter PFCAs) are not considered bioaccumulative according to the range of promulgated bioaccumulation,"B", regulatory criteria of 1000-5000 L/kg; (4) PFCAs with seven fluorinated carbons or less have low biomagnification potential in food webs, and (5) more research is necessary to fully characterize the bioaccumulation potential of PFCAs with longer fluorinated carbon chains (>7 fluorinated carbons), as PFCAs with longer fluorinated carbon chains may exhibit partitioning behavior similar to or greater than PFOS. The bioaccumulation potential of perfluorinated acids with seven fluorinated carbons or less appears to be several orders of magnitude lower than "legacy" persistent lipophilic compounds classified as bioaccumulative. Thus, although many PFCAs are environmentally persistent and can be present at detectable concentrations in wildlife, it is clear that PFCAs with seven fluorinated carbons or less (including PFO) are not bioaccumulative according to regulatory criteria.


Assuntos
Fluorocarbonos/metabolismo , Animais , Conservação dos Recursos Naturais/legislação & jurisprudência
16.
Arch Environ Contam Toxicol ; 53(1): 36-49, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17464441

RESUMO

A Sediment Quality Triad (SQT) study consisting of chemical characterization in sediment, sediment toxicity and bioaccumulation testing, and benthic community assessments was performed in the Lower Hackensack River, New Jersey. Chemistry data in sediment and porewater were evaluated based on the equilibrium partitioning approach and other published information to investigate the potential for chemical effects on benthic organisms and communities. Relationships were supported by laboratory toxicity and bioaccumulation experiments to characterize chemical effects and bioavailability. Benthic community results were evaluated using a regional, multimetric benthic index of biotic integrity and four heterogeneity indices. Evidence of slight benthic community impairment was observed in five of nine sediment sample stations. Severe lethal toxicity to amphipods (Leptocheirus plumulosus) occurred in four of these five stations. Although elevated total chromium concentrations in sediment (as high as 1900 mg/kg) were the rationale for conducting the investigation, toxicity was strongly associated with concentrations of polycyclic aromatic hydrocarbons (PAHs) rather than total chromium. PAH toxic units (SigmaPAH TU) in sediment and SigmaPAH concentrations in laboratory organisms from the bioaccumulation experiment showed a clear dose-response relationship with toxicity, with 0% survival observed in sediments in which SigmaPAH TU > 1-2 and SigmaPAH concentrations in Macoma nasuta were >2 micromol/g, lipid weight. Metals detected in sediment and porewater, with the possible exception of copper, did not correlate with either toxicity or levels in tissue, likely because acid-volatile sulfide levels exceeded concentrations of simultaneous extracted metals at all sample locations. The study reinforces the value of using multiple lines of evidence approaches such as the SQT and the importance of augmenting chemical and biological analyses with modeling and/or other approaches to evaluate chemical bioavailability and toxicity of sediments.


Assuntos
Sedimentos Geológicos , Invertebrados/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Sedimentos Geológicos/análise , Invertebrados/classificação , Invertebrados/fisiologia , Metais/análise , Metais/toxicidade , New Jersey , Hidrocarbonetos Policíclicos Aromáticos/análise , Densidade Demográfica , Rios , Poluentes Químicos da Água/análise
17.
Environ Sci Technol ; 37(8): 1625-32, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12731846

RESUMO

We explored a novel technique to deploy solid-phase microextraction (SPME) fibers to nondestructively measure the explosive compound 2,4,6-trinitrotoluene (TNT) and its nitroaromatic (NA) degradation products in laboratory sediment toxicity tests and field sediments in situ. SPME fibers within steel mesh envelopes were exposed statically via direct burial within sediment. Six fiber types (polymer coatings) were tested. Polyacrylate (PA) SPME fiber was sufficiently durable for this application, yielded the lowest detection limits, and exhibited a linear uptake relationship across toxicologically relevant sediment NA concentrations (100-2000 nmol/g dw (20-500 microg/g dw)). Temperature greatly influenced SPME absorption kinetics. Via evaluation of absorption at different temperatures, recommended sampling times needed to achieve steady-state equilibrium were 48 h for room temperatures (23-25 degrees C) and up to 7 d for cold (5 degrees C) temperatures. Although a comparison of TNT residues by SPMEs and TNT bioavailability and toxicity in sediments has not been completed, differences in SPME availability of TNT and its degradation products were found between two different TNT-spiked sediments. Our disposable SPME technique was slightly less expensive and as precise as the conventional extraction for total NAs and may prove to be a powerful exposure evaluation tool for assessing the ecological risk of these compounds.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Poluentes do Solo/análise , Trinitrotolueno/análise , Absorção , Técnicas de Química Analítica/métodos , Cinética , Polímeros , Sensibilidade e Especificidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA