Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875601

RESUMO

Leukocyte homing driven by the chemokine CCL21 is pivotal for adaptive immunity because it controls dendritic cell (DC) and T cell migration through CCR7. ACKR4 scavenges CCL21 and has been shown to play an essential role in DC trafficking at the steady state and during immune responses to tumors and cutaneous inflammation. However, the mechanism by which ACKR4 regulates peripheral DC migration is unknown, and the extent to which it regulates CCL21 in steady-state skin and lymph nodes (LNs) is contested. Specifically, our previous findings that CCL21 levels are increased in LNs of ACKR4-deficient mice [I. Comerford et al., Blood 116, 4130-4140 (2010)] were refuted [M. H. Ulvmar et al., Nat. Immunol. 15, 623-630 (2014)], and no differences in CCL21 levels in steady-state skin of ACKR4-deficient mice were reported despite compromised CCR7-dependent DC egress in these animals [S. A. Bryce et al., J. Immunol. 196, 3341-3353 (2016)]. Here, we resolve these issues and reveal that two forms of CCL21, full-length immobilized and cleaved soluble CCL21, exist in steady-state barrier tissues, and both are regulated by ACKR4. Without ACKR4, extracellular CCL21 gradients in barrier sites are saturated and nonfunctional, DCs cannot home directly to lymphatic vessels, and excess soluble CCL21 from peripheral tissues pollutes downstream LNs. The results identify the mechanism by which ACKR4 controls DC migration in barrier tissues and reveal a complex mode of CCL21 regulation in vivo, which enhances understanding of functional chemokine gradient formation.


Assuntos
Movimento Celular , Quimiocina CCL21/metabolismo , Células Dendríticas/fisiologia , Linfonodos/metabolismo , Receptores CCR/metabolismo , Animais , Camundongos Endogâmicos C57BL
2.
Methods ; 186: 112-118, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32956783

RESUMO

Modern mass spectrometers can accurately measure thousands of compounds in complex mixtures over a given liquid chromatograph method, depending on desired outcome and method duration. This stream of analytical chemistry has wide ranging application across food, pharma, environmental, forensics, clinical and research. With consistent pressure on both the ruminant production and product industries to face new and substantial challenges, liquid chromatography-mass spectrometry (LC-MS) is an ideal tool to identify, detect and quantify markers of breeding, production and adaption to support both research and industry to overcome these challenges. Herein, we provide a description of the theoretical basis and framework for LC-MS as a rapidly developing technique and highlight its application in measuring cattle and cattle product traits through protein quantitation with specific focus on beta-casein proteoforms.


Assuntos
Caseínas/análise , Indústria de Laticínios/métodos , Leite/química , Espectrometria de Massas em Tandem/métodos , Animais , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Isoformas de Proteínas/análise
3.
Anal Bioanal Chem ; 414(26): 7597-7607, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36125541

RESUMO

N-Glycan alterations contribute to the pathophysiology and progression of various diseases. However, the involvement of N-glycans in knee osteoarthritis (KOA) progression at the tissue level, especially within articular cartilage, is still poorly understood. Thus, the aim of this study was to spatially map and identify KOA-specific N-glycans from formalin-fixed paraffin-embedded (FFPE) osteochondral tissue of the tibial plateau relative to cadaveric control (CTL) tissues. Human FFPE osteochondral tissues from end-stage KOA patients (n=3) and CTL individuals (n=3), aged >55 years old, were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Overall, it was revealed that 22 N-glycans were found in the cartilage region of KOA and CTL tissue. Of those, 15 N-glycans were more prominent in KOA cartilage than CTL cartilage. We then compared sub-regions of KOA and CTL tissues based on the Osteoarthritis Research Society International (OARSI) histopathological grade (1 to 6), where 1 is an intact cartilage surface and 6 is cartilage surface deformation. Interestingly, three specific complex-type N-glycans, (Hex)4(HexNAc)3, (Hex)4(HexNAc)4, and (Hex)5(HexNAc)4, were found to be localized to the superficial fibrillated zone of degraded cartilage (KOA OARSI 2.5-4), compared to adjacent cartilage with less degradation (KOA OARSI 1-2) or relatively healthy cartilage (CTL OARSI 1-2). Our results demonstrate that N-glycans specific to degraded cartilage in KOA patients have been identified at the tissue level for the first time. The presence of these N-glycans could further be evaluated as potential diagnostic and prognostic biomarkers.


Assuntos
Osteoartrite do Joelho , Humanos , Pessoa de Meia-Idade , Cromatografia Líquida , Espectrometria de Massas em Tandem , Polissacarídeos/análise , Cartilagem/química , Formaldeído/química , Biomarcadores
4.
Anal Bioanal Chem ; 413(10): 2675-2682, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33063168

RESUMO

Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) has been successfully used to elucidate the relative abundance and spatial mapping of analytes in situ. Currently, sample preparation workflows for soft formalin-fixed paraffin-embedded (FFPE) tissues, such as brain, liver, kidney, and heart, have been successfully developed. However, hard tissues, such as cartilage-bone, tooth, and whole mouse body, have resulted in the loss of morphology or tissue during the heat-induced epitope retrieval (HIER) step on commercially available conductive indium tin oxide (ITO) slides. Therefore, we have successfully developed a novel and cost-effective sample preparation workflow in which commercial conductive ITO slides are pre-coated with gelatin and chromium potassium sulfate dodecahydrate to improve the adherence of FFPE human osteoarthritic cartilage-bone tissue sections. Gelatin-coated ITO slides also resulted in overall higher N-glycan signal intensity for not only FFPE osteoarthritic cartilage-bone tissue but also for FFPE hard-boiled egg white used as a quality control to assess the quality of sample preparation and MALDI-MSI acquisition. In summary, we present a novel straightforward workflow to improve slide adherence and morphological preservation of FFPE cartilage-bone tissue sections during HIER while improving the signal intensity of N-glycans spatially mapped from the same tissue sections by MALDI-MSI.


Assuntos
Osso e Ossos/química , Cartilagem/química , Osteoartrite/patologia , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Idoso de 80 Anos ou mais , Osso e Ossos/patologia , Cartilagem/patologia , Feminino , Gelatina/química , Humanos , Compostos de Estanho/química
5.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899238

RESUMO

Osteoarthritis (OA) is the most common degenerative joint disease, predicted to increase in incidence year by year due to an ageing population. Due to the biological complexity of the disease, OA remains highly heterogeneous. Although much work has been undertaken in the past few years, underlying molecular mechanisms leading to joint tissue structural deterioration are not fully understood, with only few validated markers for disease diagnosis and progression being available. Discovery and quantitation of various OA-specific biomarkers is still largely focused on the bodily fluids which does not appear to be reliable and sensitive enough. However, with the advancement of spatial proteomic techniques, several novel peptides and proteins, as well as N-glycans, can be identified and localised in a reliable and sensitive manner. To summarise the important findings from OA biomarker studies, papers published between 2000 and 2020 were searched via Google Scholar and PubMed. Medical subject heading (MeSH) terms 'osteoarthritis', 'biomarker', 'synovial fluid', 'serum', 'urine', 'matrix-assisted laser desorption/ionisation', 'mass spectrometry imaging', 'proteomic', 'glycomic', 'cartilage', 'synovium' AND 'subchondral bone' were selectively used. The literature search was restricted to full-text original research articles and written only in English. Two main areas were reviewed for OA biomarker studies: (1) an overview of disease-specific markers detected from different types of OA bio-samples, and (2) an up-to-date summary of the tissue-specific OA studies that have utilised matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI). Overall, these OA biomarkers could provide clinicians with information for better the diagnosis, and prognosis of individual patients, and ultimately help facilitate the development of disease-modifying treatments.


Assuntos
Biomarcadores/metabolismo , Cartilagem Articular/patologia , Osteoartrite/patologia , Proteoma/análise , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Membrana Sinovial/patologia , Cartilagem Articular/metabolismo , Humanos , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo
6.
Proteomics ; 19(21-22): e1800482, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31364262

RESUMO

Epithelial ovarian cancer is one of the most fatal gynecological malignancies in adult women. As studies on protein N-glycosylation have extensively reported aberrant patterns in the ovarian cancer tumor microenvironment, obtaining spatial information will uncover tumor-specific N-glycan alterations in ovarian cancer development and progression. matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is employed to investigate N-glycan distribution on formalin-fixed paraffin-embedded ovarian cancer tissue sections from early- and late-stage patients. Tumor-specific N-glycans are identified and structurally characterized by porous graphitized carbon-liquid chromatography-electrospray ionization-tandem mass spectrometry (PGC-LC-ESI-MS/MS), and then assigned to high-resolution images obtained from MALDI-MSI. Spatial distribution of 14 N-glycans is obtained by MALDI-MSI and 42 N-glycans (including structural and compositional isomers) identified and structurally characterized by LC-MS. The spatial distribution of oligomannose, complex neutral, bisecting, and sialylated N-glycan families are localized to the tumor regions of late-stage ovarian cancer patients relative to early-stage patients. Potential N-glycan diagnostic markers that emerge include the oligomannose structure, (Hex)6 + (Man)3 (GlcNAc)2 , and the complex neutral structure, (Hex)2 (HexNAc)2 (Deoxyhexose)1 + (Man)3 (GlcNAc)2 . The distribution of these markers is evaluated using a tissue microarray of early- and late-stage patients.


Assuntos
Biomarcadores Tumorais/genética , Cistadenoma Seroso/genética , Neoplasias Ovarianas/genética , Polissacarídeos/genética , Biomarcadores Tumorais/química , Cromatografia Líquida , Cistadenoma Seroso/patologia , Feminino , Genômica/métodos , Glicosilação , Humanos , Imagem Molecular , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Microambiente Tumoral/genética
7.
Anal Chem ; 91(23): 14846-14853, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31660720

RESUMO

The strength of MALDI-MSI is to analyze and visualize spatial intensities of molecular features from an intact tissue. The distribution of the intensities can then be visualized within a single tissue section or compared in between sections, acquired consecutively. This method can be reliably used to reveal physiological structures and has the potential to identify molecular details, which correlate with biological outcomes. MALDI-MSI implementation in clinical laboratories requires the ability to ensure method quality and validation to meet diagnostic expectations. To be able to get consistent qualitative and quantitative results, standardized sample preparation and data acquisition are of highest priority. We have previously shown that the deposition of internal standards onto the tissue section during sample preparation can be used to improve the mass accuracy of monitored m/z features across the sample. Here, we present the use of external and internal controls for the quality check of sample preparation and data acquisition, which is particularly relevant when either many spectra are acquired during a single MALDI-MSI experiment or data from independent experiments are processed together. To monitor detector performance and sample preparation, we use egg white as an external control for peptide and N-glycan MALDI-MSI throughout the experiment. We have also identified endogenous peptides from cytoskeletal proteins, which can be reliably monitored in gynecological tissue samples. Lastly, we summarize our standard quality control workflow designed to produce reliable and comparable MALDI-MSI data from single sections and tissue microarrays (TMAs).


Assuntos
Clara de Ovo/química , Neoplasias do Endométrio/química , Fragmentos de Peptídeos/análise , Polissacarídeos/análise , Proteínas/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas , Sequência de Aminoácidos , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/patologia , Feminino , Humanos , Microtomia , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Proteínas/química , Proteólise , Controle de Qualidade , Análise Serial de Tecidos , Inclusão do Tecido , Tripsina/química
8.
Anal Bioanal Chem ; 407(8): 2127-39, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25434632

RESUMO

Recent developments in spatial proteomics have paved the way for retrospective in situ mass spectrometry (MS) analyses of formalin-fixed paraffin-embedded clinical tissue samples. This type of analysis is commonly referred to as matrix-assisted laser desorption/ionization (MALDI) imaging. Recently, formalin-fixed paraffin-embedded MALDI imaging analyses were augmented to allow in situ analyses of tissue-specific N-glycosylation profiles. In the present study, we outline an improved automated sample preparation method for N-glycan MALDI imaging, which uses in situ PNGase F-mediated release and measurement of N-linked glycans from sections of formalin-fixed murine kidney. The sum of the presented data indicated that N-glycans can be cleaved from proteins within formalin-fixed tissue and characterized using three strategies: (i) extraction and composition analysis through on-target MALDI MS and liquid chromatography coupled to electrospray ionization ion trap MS; (ii) MALDI profiling, where N-glycans are released and measured from large droplet arrays in situ; and (iii) MALDI imaging, which maps the tissue specificity of N-glycans at a higher resolution. Thus, we present a complete, straightforward method that combines MALDI imaging and characterization of tissue-specific N-glycans and complements existing strategies.


Assuntos
Rim/química , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Formaldeído/química , Camundongos , Inclusão em Parafina , Fixação de Tecidos
9.
FEBS J ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975872

RESUMO

Immunomodulatory imide drugs (IMiDs) are central components of therapy for multiple myeloma (MM). IMiDs bind cereblon (CRBN), an adaptor for the CUL4-DDB1-RBX1 E3 ligase to change its substrate specificity and induce degradation of 'neosubstrate' transcription factors that are essential to MM cells. Mechanistic studies to date have largely focussed on mediators of therapeutic activity and insight into clinical IMiD toxicities is less developed. We adopted BioID2-dependent proximity labelling (BioID2-CRBN) to characterise the CRBN interactome in the presence and absence of various IMiDs and the proteasome inhibitor, bortezomib. We aimed to leverage this technology to further map CRBN interactions beyond what has been achieved by conventional proteomic techniques. In support of this approach, analysis of cells expressing BioID2-CRBN following IMiD treatment displayed biotinylation of known CRBN interactors and neosubstrates. We observed that bortezomib alone significantly modifies the CRBN interactome. Proximity labelling also suggested that IMiDs augment the interaction between CRBN and proteins that are not degraded, thus designating 'neointeractors' distinct from previously disclosed 'neosubstrates'. Here we identify Non-Muscle Myosin Heavy Chain IIA (MYH9) as a putative CRBN neointeractor that may contribute to the haematological toxicity of IMiDs. These studies provide proof of concept for proximity labelling technologies in the mechanistic profiling of IMiDs and related E3-ligase-modulating drugs.

10.
Cancers (Basel) ; 15(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37046833

RESUMO

Eighty percent of ovarian cancer patients initially respond to chemotherapy, but the majority eventually experience a relapse and die from the disease with acquired chemoresistance. In addition, 20% of patients do not respond to treatment at all, as their disease is intrinsically chemotherapy resistant. Data-independent acquisition nano-flow liquid chromatography-mass spectrometry (DIA LC-MS) identified the three protein markers: gelsolin (GSN), calmodulin (CALM1), and thioredoxin (TXN), to be elevated in high-grade serous ovarian cancer (HGSOC) tissues from patients that responded to chemotherapy compared to those who did not; the differential expression of the three protein markers was confirmed by immunohistochemistry. Analysis of the online GENT2 database showed that mRNA levels of GSN, CALM1, and TXN were decreased in HGSOC compared to fallopian tube epithelium. Elevated levels of GSN and TXN mRNA expression correlated with increased overall and progression-free survival, respectively, in a Kaplan-Meier analysis of a large online repository of HGSOC patient data. Importantly, differential expression of the three protein markers was further confirmed when comparing parental OVCAR-5 cells to carboplatin-resistant OVCAR-5 cells using DIA LC-MS analysis. Our findings suggest that GSN, CALM1, and TXN may be useful biomarkers for predicting chemotherapy response and understanding the mechanisms of chemotherapy resistance. Proteomic data are available via ProteomeXchange with identifier PXD033785.

11.
Nanoscale ; 15(3): 1236-1247, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36541661

RESUMO

Immuno-specific enrichment of extracellular vesicles (EVs) can provide important information into cellular pathways underpinning various pathologies and for non-invasive diagnostics, including mass spectrometry-based analyses. Herein, we report an optimised protocol for immuno-magnetic enrichment of specific EV subtypes and their subsequent processing with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Specifically, we conjugated placental alkaline phosphatase (PLAP) antibodies to magnetic iron oxide nanowires (NWs) derived from bacterial biofilms and demonstrated the utility of this approach by enriching placenta-specific EVs (containing PLAP) from cell culture media. We demonstrate efficient PLAP+ve EV enrichment for both NW-PLAP and Dynabeads™-PLAP, with high PLAP protein recovery (83.7 ± 8.9% and 83.2 ± 5.9%, respectively), high particle-to-protein ratio (7.5 ± 0.7 × 109 and 7.1 ± 1.2 × 109, respectively), and low non-specific binding of non-target EVs (7 ± 3.2% and 5.4 ± 2.2%, respectively). Furthermore, our optimized EV enrichment and processing approach identified 2518 and 2545 protein groups with LC-MS/MS for NW-PLAP and Dynabead™-PLAP, respectively, with excellent reproducibility (Pearson correlation 0.986 and 0.988). These findings demonstrate that naturally occurring iron oxide NWs have comparable performance to current gold standard immune-magnetic beads. The optimized immuno-specific EV enrichment for LC-MS/MS method provides a low-cost and highly-scalable yet efficient, high-throughput approach for quality EV proteomic studies.


Assuntos
Vesículas Extracelulares , Nanofios , Feminino , Gravidez , Humanos , Cromatografia Líquida/métodos , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Placenta , Vesículas Extracelulares/química , Proteínas/análise
12.
J Proteome Res ; 11(11): 5252-64, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22954305

RESUMO

Spermatozoa are functionally inert when they emerge from the testes. Functional competence is conferred upon these cells during a post-testicular phase of sperm maturation in the epididymis. Remarkably, this functional transformation of epididymal spermatozoa occurs in the absence of nuclear gene transcription or protein translation. To understand the cellular mechanisms underpinning epididymal maturation, we have performed a label-free, MS-based, comparative quantification of peptides from caput, corpus and caudal epididymal spermatozoa. In total, 68 phosphopeptide changes could be detected during epididymal maturation corresponding to the identification of 22 modified proteins. Included in this list are the sodium-bicarbonate cotransporter, the sperm specific serine kinase 1, AKAP4 and protein kinase A regulatory subunit. Furthermore, four phosphopeptide changes came from Izumo1, the sperm-egg fusion protein, in the cytoplasmic segment of the protein. 2D-PAGE confirmed that Izumo1 is post-translationally modified during epididymal transit. Interestingly, phosphorylation on Izumo1 was detected on residue S339 in the caput and corpus but not caudal cells. Furthermore, Izumo1 exhibited four phosphorylated residues when spermatozoa reached the cauda, which were absent from caput cells. A model is advanced suggesting that these phospho-regulations are likely to act as a scaffold for the association of adaptor proteins with Izumo1 as these cells prepare for fertilization.


Assuntos
Epididimo/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Fosfopeptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Animais , Western Blotting , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Masculino , Espectrometria de Massas , Camundongos , Ratos , Ratos Wistar
13.
J Proteome Res ; 10(3): 1004-17, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21155529

RESUMO

Although the overall performance of modern mass spectrometers has increased, proteomic analysis of complex samples still requires prefractionation either at the protein or peptide level to allow for in-depth analysis of normal cellular function. Here, we report a novel way to identify protein changes occurring during sperm development through the epididymis. Phosphopeptides were first enriched from either the rat caput or caudal regions of the epididymides using TiO(2), and the profiles then quantitatively compared. We show that 77 TiO(2)-enriched peptides become significantly modified in the epididymis, equating to 53 proteins. Through the use of immunoblot analysis, we confirmed that three proteins, ornithine-decarboxylase antizyme 3, heat-shock protein 90α, and testis-lipid binding protein, undergo major protein loss during epididymal passage. Many other proteins, including t-complex protein 10 and Spata18 show testis unique expression, appear to undergo phosphorylation during this same time frame. These data provide mechanistic insight into the means by which spermatozoa acquire functionality during epididymal transit.


Assuntos
Epididimo/citologia , Fosfopeptídeos/química , Proteínas/química , Maturação do Esperma , Espermatozoides/fisiologia , Titânio/química , Sequência de Aminoácidos , Animais , Epididimo/fisiologia , Immunoblotting/métodos , Masculino , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Fosforilação , Proteínas/genética , Proteínas/metabolismo , Proteômica/métodos , Ratos , Ratos Wistar , Software , Espermatozoides/química
14.
Methods Mol Biol ; 2228: 159-166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33950490

RESUMO

Quantitation using mass spectrometry (MS) is a routine approach for multiple analytes, including small molecules and peptides. Electrospray-based MS platforms are typically employed, as they provide highly reproducible outputs for batch processing of multiple samples. Quantitation using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (ToF) mass spectrometry, while less commonly adopted, offers the ability to monitor analytes at significantly higher throughput and lower cost compared with ESI MS. Achieving accurate quantitation using this approach requires the development of appropriate sample preparation, spiking of appropriate internal standards, and acquisition to minimize spot-to-spot variability. Here we describe the preparation of samples for accurate quantitation using MALDI-ToF MS. The methodology presented shows the ability to quantitate perfluorooctanesulfonic acid (PFOS) from contaminated water.


Assuntos
Ácidos Alcanossulfônicos/análise , Monitoramento Ambiental , Fluorocarbonos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Poluentes Químicos da Água/análise , Calibragem , Monitoramento Ambiental/normas , Padrões de Referência , Projetos de Pesquisa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas
15.
Front Chem ; 9: 653959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178940

RESUMO

Protein glycosylation is a common post-translational modification that modulates biological processes such as the immune response and protein trafficking. Altered glycosylation profiles are associated with cancer and inflammatory diseases, as well as impacting the efficacy of therapeutic monoclonal antibodies. Consisting of oligosaccharides attached to asparagine residues, enzymatically released N-linked glycans are analytically challenging due to the diversity of isomeric structures that exist. A commonly used technique for quantitative N-glycan analysis is liquid chromatography-mass spectrometry (LC-MS), which performs glycan separation and characterization. Although many reversed and normal stationary phases have been utilized for the separation of N-glycans, porous graphitic carbon (PGC) chromatography has become desirable because of its higher resolving capability, but is difficult to implement in a robust and reproducible manner. Herein, we demonstrate the analytical properties of a 15 cm fused silica capillary (75 µm i.d., 360 µm o.d.) packed in-house with Hypercarb PGC (3 µm) coupled to an Agilent 6550 Q-TOF mass spectrometer for N-glycan analysis in positive ion mode. In repeatability and intermediate precision measurements conducted on released N-glycans from a glycoprotein standard mixture, the majority of N-glycans reported low coefficients of variation with respect to retention times (≤4.2%) and peak areas (≤14.4%). N-glycans released from complex samples were also examined by PGC LC-MS. A total of 120 N-glycan structural and compositional isomers were obtained from formalin-fixed paraffin-embedded ovarian cancer tissue sections. Finally, a comparison between early- and late-stage formalin-fixed paraffin-embedded ovarian cancer tissues revealed qualitative changes in the α2,3- and α2,6-sialic acid linkage of a fucosylated bi-antennary complex N-glycan. Although the α2,3-linkage was predominant in late-stage ovarian cancer, the alternate α2,6-linkage was more prevalent in early-stage ovarian cancer. This study establishes the utility of in-house packed PGC columns for the robust and reproducible LC-MS analysis of N-glycans.

16.
Anal Sci Adv ; 2(3-4): 225-237, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38716449

RESUMO

The applicability of mass spectrometry imaging (MSI) has exponentially increased with the improvement of sample preparation, instrumentation (spatial resolution) and data analysis. The number of MSI publications listed in PubMed continues to grow with 378 published articles in 2020-2021. Initially, MSI was just sensitive enough to identify molecular features correlating with distinct tissue regions, similar to the resolution achieved by visual inspection after standard immunohistochemical staining. Although the spatial resolution was limited compared with other imaging modalities, the molecular intensity mapping added a new exciting capability. Over the past decade, significant improvements in every step of the workflow and most importantly in instrumentation were made, which now enables the molecular analysis at a cellular and even subcellular level. Here, we summarize the latest developments in MSI, with a focus on the latest approaches for tissue-based imaging described in 2020.

17.
Cancers (Basel) ; 13(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34771551

RESUMO

Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) can determine the spatial distribution of analytes such as protein distributions in a tissue section according to their mass-to-charge ratio. Here, we explored the clinical potential of machine learning (ML) applied to MALDI MSI data for cancer diagnostic classification using tissue microarrays (TMAs) on 302 colorectal (CRC) and 257 endometrial cancer (EC)) patients. ML based on deep neural networks discriminated colorectal tumour from normal tissue with an overall accuracy of 98% in balanced cross-validation (98.2% sensitivity and 98.6% specificity). Moreover, our machine learning approach predicted the presence of lymph node metastasis (LNM) for primary tumours of EC with an accuracy of 80% (90% sensitivity and 69% specificity). Our results demonstrate the capability of MALDI MSI for complementing classic histopathological examination for cancer diagnostic applications.

18.
Proteomics ; 10(13): 2516-30, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20432483

RESUMO

The quality of MALDI-TOF mass spectrometric analysis is highly dependent on the matrix and its deposition strategy. Although different matrix-deposition methods have specific advantages, one major problem in the field of proteomics, particularly with respect to quantitation, is reproducibility between users or laboratories. Compounding this is the varying crystal homogeneity of matrices depending on the deposition strategy used. Here, we describe a novel optimised matrix-deposition strategy for LC-MALDI-TOF/TOF MS using an automated instrument that produces a nebulised matrix "mist" under controlled atmospheric conditions. Comparisons of this with previously reported strategies showed the method to be advantageous for the atypical matrix, 2,5-DHB, and improved phosphopeptide ionisation when compared with deposition strategies for CHCA. This optimised DHB matrix-deposition strategy with LC-MALDI-TOF/TOF MS, termed EZYprep LC, was subsequently optimised for phosphoproteome analysis and compared to LC-ESI-IT-MS and a previously reported approach for phosphotyrosine identification and characterisation. These methods were used to map phosphorylation on epidermal growth factor-stimulated epidermal growth factor receptor to gauge the sensitivity of the proposed method. EZYprep DHB LC-MALDI-TOF/TOF MS was able to identify more phosphopeptides and characterise more phosphorylation sites than the other two proteomic strategies, thus proving to be a sensitive approach for phosphoproteome analysis.


Assuntos
Cromatografia Líquida/métodos , Fosfopeptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Cromatografia Líquida/instrumentação , Receptores ErbB/análise , Receptores ErbB/química , Humanos , Dados de Sequência Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
19.
Proteomics ; 9(11): 3047-57, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19526547

RESUMO

Phosphorylation is one of the most important PTMs and is estimated to occur on 30% of the mammalian proteome. Its perturbed regulation has been implicated in many pathologies. The rarity of phosphotyrosine compared with phosphoserine or phosphothreonine is prompting the development of more sensitive approaches because proteomic technologies that are currently used to assess tyrosine phosphorylation in proteins are inadequate, identifying only a fraction of the predicted tyrosine phosphoproteome. Here we describe the development of a reproducible, high-sensitivity methodology for the detection and mapping of phosphotyrosine residues by MS. The anti-phosphotyrosine antibody 4G10 was coupled covalently to super para-magnetic beads or by affinity to super para-magnetic beads with protein G covalently attached. Using this approach, we successfully enriched phosphotyrosine peptides mixed with non-phosphorylated peptides at a ratio of up to 1:200, enabling detection at a level representing the highest sensitivity reported for tyrosine phosphorylation. The beads were subsequently used to enrich tyrosine phosphopeptides from a digest of the in vitro-phosphorylated recombinant beta-intracellular region of the granulocyte-macrophage colony-stimulating factor receptor, which was subsequently analysed by MALDI-TOF/TOF MS. Our results define this methodology as a sensitive approach for tyrosine phosphoproteome analysis.


Assuntos
Magnetismo/métodos , Fosfoproteínas/análise , Fosfotirosina/análise , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Técnicas de Imunoadsorção , Microesferas , Fosforilação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Lab Chip ; 19(11): 1961-1970, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31099359

RESUMO

Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS), in combination with Biotyper software, is a rapid, high-throughput, and accurate method for the identification of microbes. Microbial outbreaks in a brewery present a major risk for companies as it can lead to cost-intensive recalls and damage to the brand reputation. MALDI-TOF MS has been implemented into a brewery setting for quality control practices and the identification of beer spoilage microorganisms. However, the applicability of this approach is hindered by compatibility issues associated with mixed cultures, requiring the use of time-consuming selective cultivation techniques prior to identification. We propose a novel, low-cost approach based on the combination of inertial microfluidics and secondary flows in a spiral microchannel for high-throughput and efficient separation of yeasts (Saccharomyces pastorianus and Saccharomyces cerevisiae) from beer spoilage microorganisms (Lactobacillus brevis and Pediococcus damnosus). Flow rates were optimised using S. pastorianus and L. brevis, leading to separation of more than 90% of the L. brevis cells from yeast. The microorganisms were then identified to the species level using the MALDI-TOF MS platform using standard sample preparation protocols. This study shows the high-throughput and rapid separation of spoilage microorganisms (0.3-3 µm) from background yeast (5 µm) from beer, subsequent identification using MALDI Biotyper, and the potential applicability of the approach for biological control in the brewing industry.


Assuntos
Bactérias/isolamento & purificação , Cerveja/microbiologia , Dispositivos Lab-On-A-Chip , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Desenho de Equipamento , Limite de Detecção , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA