Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373491

RESUMO

GDSL esterases/lipases are a subclass of lipolytic enzymes that play critical roles in plant growth and development, stress response, and pathogen defense. However, the GDSL esterase/lipase genes involved in the pathogen response of apple remain to be identified and characterized. Thus, in this study, we aimed to analyze the phenotypic difference between the resistant variety, Fuji, and susceptible variety, Gala, during infection with C. gloeosporioides, screen for anti-disease-associated proteins in Fuji leaves, and elucidate the underlying mechanisms. The results showed that GDSL esterase/lipase protein GELP1 contributed to C. gloeosporioides infection defense in apple. During C. gloeosporioides infection, GELP1 expression was significantly upregulated in Fuji. Fuji leaves exhibited a highly resistant phenotype compared with Gala leaves. The formation of infection hyphae of C. gloeosporioides was inhibited in Fuji. Moreover, recombinant His:GELP1 protein suppressed hyphal formation during infection in vitro. Transient expression in Nicotiana benthamiana showed that GELP1-eGFP localized to the endoplasmic reticulum and chloroplasts. GELP1 overexpression in GL-3 plants increased resistance to C. gloeosporioides. MdWRKY15 expression was upregulated in the transgenic lines. Notably, GELP1 transcript levels were elevated in GL-3 after salicylic acid treatment. These results suggest that GELP1 increases apple resistance to C. gloeosporioides by indirectly regulating salicylic acid biosynthesis.


Assuntos
Colletotrichum , Malus , Esterases/genética , Esterases/metabolismo , Lipase/metabolismo , Malus/genética , Malus/metabolismo , Colletotrichum/genética , Folhas de Planta/metabolismo , Ácido Salicílico/farmacologia , Doenças das Plantas/genética
2.
Small ; 18(9): e2105044, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34914176

RESUMO

The persistent double layer structure whereby two layers with different properties form at the front and rear of absorbers is a critical challenge in the field of kesterite thin-film solar cells, which imposes additional nonradiative recombination in the quasi-neutral region and potential limitation to the transport of hole carriers. Herein, an effective model for growing monolayer CZTSe thin-films based on metal precursors with large grains spanning the whole film is developed. Voids and fine grain layer are avoided successfully by suppressing the formation of a Sn-rich liquid metal phase near Mo back contact during alloying, while grain coarsening is greatly promoted by enhancing mass transfer during grain growth. The desired morphology exhibits several encouraging features, including significantly reduced recombination in the quasi-neutral region that contributes to the large increase of short-circuit current, and a quasi-Ohmic back contact which is a prerequisite for high fill factor. Though this growth mode may introduce more interfacial defects which require further modification, the strategies demonstrated remove a primary obstacle toward higher efficiency kesterite solar cells, and can be applicable to morphology control with other emerging chalcogenide thin films.

3.
Small ; 18(50): e2204392, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36319478

RESUMO

Small grain size and near-horizontal grain boundaries are known to be detrimental to the carrier collection efficiency and device performance of pure-sulfide Cu2 ZnSnS4 (CZTS) solar cells. However, forming large grains spanning the absorber layer while maintaining high electronic quality is challenging particularly for pure sulfide CZTS. Herein, a liquid-phase-assisted grain growth (LGG) model that enables the formation of large grains spanning across the CZTS absorber without compromising the electronic quality is demonstrated. By introducing a Ge-alloyed CZTS nanoparticle layer at the bottom of the sputtered precursor, a Cu-rich and Sn-rich liquid phase forms at the high temperature sulfurization stage, which can effectively remove the detrimental near-horizontal grain boundaries and promote grain growth, thus greatly improving the carrier collection efficiency and reducing nonradiative recombination. The remaining liquid phase layer at the rear interface shows a high work function, acting as an effective hole transport layer. The modified morphology greatly increases the short-circuit current density and fill factor, enabling 10.3% efficient green Cd-free CZTS devices. This work unlocks a grain growth mechanism, advancing the morphology control of sulfide-based kesterite solar cells.

4.
Adv Mater ; 36(3): e2307733, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37850716

RESUMO

The Cd-free Cu2 ZnSnS4 (CZTS) solar cell is an ideal candidate for producing low-cost clean energy through green materials owing to its inherent environmental friendliness and earth abundance. Nevertheless, sulfide CZTS has long suffered from severe open-circuit voltage (VOC ) deficits, limiting the full exploitation of performance potential and further progress. Here, an effective strategy is proposed to alleviate the nonradiative VOC loss by manipulating the phase evolution during the critical kesterite phase formation stage. With a Ge cap layer on the precursor, premature CZTS grain formation is suppressed at low temperatures, leading to fewer nucleation centers at the initial crystallization stage. Consequently, the CZTS grain formation and crystallization are deferred to high temperatures, resulting in enhanced grain interior quality and less unfavorable grain boundaries in the final film. As a result, a champion efficiency of 10.7% for Cd-free CZTS solar cells with remarkably high VOC beyond 800 mV (63.2% Schockley-Queisser limit) is realized, indicating that nonradiative recombination is effectively inhibited. This strategy may advance other compound semiconductors seeking high-quality crystallization.

5.
Adv Sci (Weinh) ; 11(15): e2305938, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342621

RESUMO

Kesterite is an earth-abundant energy material with high predicted power conversion efficiency, making it a sustainable and promising option for photovoltaics. However, a large open circuit voltage Voc deficit due to non-radiative recombination at intrinsic defects remains a major hurdle, limiting device performance. Incorporating Ge into the kesterite structure emerges as an effective approach for enhancing performance by manipulating defects and morphology. Herein, how different amounts of Ge affect the kesterite growth pathways through the combination of advanced microscopy characterization techniques are systematically investigated. The results demonstrate the significance of incorporating Ge during the selenization process of the CZTSSe thin film. At high temperature, the Ge incorporation effectively delays the selenization process due to the formation of a ZnSe layer on top of the metal alloys through decomposition of the Cu-Zn alloy and formation of Cu-Sn alloy, subsequently forming of Cu-Sn-Se phase. Such an effect is compounded by more Ge incorporation that further postpones kesterite formation. Furthermore, introducing Ge mitigates detrimental "horizontal" grain boundaries by increasing the grain size on upper layer. The Ge incorporation strategy discussed in this study holds great promise for improving device performance and grain quality in CZTSSe and other polycrystalline chalcogenide solar cells.

6.
Adv Mater ; 35(42): e2303936, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453141

RESUMO

Thin-film solar cells are expected to play a significant role in the space industry, building integrated photovoltaic (BIPV), indoor applications, and tandem solar cells, where bifaciality and semitransparency are highly desired. Sb2 (S,Se)3 has emerged as a promising new photovoltaic (PV) material for its high absorption coefficient, tunable bandgap, and nontoxic and earth-abundant constituents. However, high-efficiency Sb2 (S,Se)3 solar cells exclusively employ monofacial architectures, leaving a considerable gap toward large-scale application in aforementioned fields. Here, a bifacial and semitransparent Sb2 (S,Se)3 solar cell and its extended application in tandem solar cells are reported. The transparent conductive oxides (TCOs) and the ultrathin inner n-i-p structure provide high long-wavelength transmittance. Despite the MnS/ITO Schottky junction, power conversion efficiencies (PCEs) of 7.41% and 6.36% are achieved with front and rear illumination, respectively, contributing to a great bifaciality of 0.86. Consequently, the reported device gains great enhancement in PV performance by exploiting albedo of surroundings and shows exceptional capability in absorbing tilt incident light. Moreover, an Sb2 (S,Se)3 /Si tandem solar cell with a PCE of 11.66% is achieved in preliminary trials. These exciting findings imply that bifacial and semitransparent Sb2 (S,Se)3 solar cells possess tremendous potential in practical applications based on their unique characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA