Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Impot Res ; 35(7): 639-642, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37055523

RESUMO

With the advent of new surgical techniques to treat Peyronie's disease with concomitant erectile dysfunction, there remains a question of whether manual modeling (MM), an older technique, still has a place in the treatment algorithm within penile prosthesis (PP) surgery. While the implantation of a PP often corrects moderate to severe curvature, penile curvature can remain greater than 30°, even when concurrent MM is performed during prothesis implantation. There are new variations of the MM technique that have been recently utilized in the intraoperative and postoperative setting to achieve penile curvature less than 30° when the implant is fully inflated. The inflatable PP, regardless of the specific model of choice, is preferred over the noninflatable PP when utilizing the MM technique. MM should be the first line of treatment for persisting intraoperative penile curvature after the placement of a PP due to its long-term efficacy, noninvasive approach, and significantly low risk of adverse effects.


Assuntos
Disfunção Erétil , Implante Peniano , Induração Peniana , Prótese de Pênis , Masculino , Humanos , Implante Peniano/efeitos adversos , Implante Peniano/métodos , Induração Peniana/complicações , Induração Peniana/cirurgia , Satisfação do Paciente , Pênis/cirurgia , Disfunção Erétil/cirurgia , Disfunção Erétil/complicações
2.
Nat Commun ; 14(1): 4155, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438348

RESUMO

The small Ultra-Red Fluorescent Protein (smURFP) represents a new class of fluorescent protein with exceptional photostability and brightness derived from allophycocyanin in a previous directed evolution. Here, we report the smURFP crystal structure to better understand properties and enable further engineering of improved variants. We compare this structure to the structures of allophycocyanin and smURFP mutants to identify the structural origins of the molecular brightness. We then use a structure-guided approach to develop monomeric smURFP variants that fluoresce with phycocyanobilin but not biliverdin. Furthermore, we measure smURFP photophysical properties necessary for advanced imaging modalities, such as those relevant for two-photon, fluorescence lifetime, and single-molecule imaging. We observe that smURFP has the largest two-photon cross-section measured for a fluorescent protein, and that it produces more photons than organic dyes. Altogether, this study expands our understanding of the smURFP, which will inform future engineering toward optimal FPs compatible with whole organism studies.


Assuntos
Biliverdina , Corantes , Proteínas Luminescentes/genética , Engenharia , Proteína Vermelha Fluorescente
3.
Transl Vis Sci Technol ; 11(8): 23, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998058

RESUMO

Purpose: The objective of this study was to utilize therapeutic ultrasound in enhancing delivery of topical macromolecules into the cornea. Methods: Rabbit corneas were dissected and placed in a diffusion cell with a small ultra-red fluorescent protein (smURFP; molecular weight of 32,000 Da) as a macromolecule solution. The corneas were treated with continuous ultrasound application at frequencies of 400 or 600 kHz and intensities of 0.8 to 1.0 W/cm2 for 5 minutes, or sham-treated. Fluorescence imaging of the cornea sections was used to observe the delivery of macromolecules into individual epithelial cells. Spectrophotometric analysis at smURFP maximal absorbance of 640 nm was done to determine the presence of macromolecules in the receiver compartment. Safety of ultrasound application was studied through histology analysis. Results: Ultrasound-treated corneas showed smURFP delivery into epithelial cells by fluorescence in the cytoplasm, whereas sham-treated corneas lacked any appreciable fluorescence in the individual cells. The sham group showed 0% of subcellular penetration, whereas the 400 kHz ultrasound-treated group and 600 kHz ultrasound-treated group showed 31% and 57% of subcellular penetration, respectively. Spectrophotometry measurements indicated negligible presence of smURFP macromolecules in the receiver compartment solution in both the sham and ultrasound treatment groups, and these macromolecules did not cross the entire depth of the cornea. Histological studies showed no significant corneal damage due to ultrasound application. Conclusions: Therapeutic ultrasound application was shown to increase the delivery of smURFP macromolecules into the cornea. Translational Relevance: Our study offers a clinical potential for a minimally invasive macromolecular treatment of corneal diseases.


Assuntos
Doenças da Córnea , Terapia por Ultrassom , Animais , Córnea/diagnóstico por imagem , Córnea/metabolismo , Doenças da Córnea/metabolismo , Fluorescência , Substâncias Macromoleculares/metabolismo , Coelhos
4.
Int J Biol Macromol ; 153: 100-106, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32105698

RESUMO

Nanoparticles are excellent imaging agents for cancer, but variability in chemical structure, racemic mixtures, and addition of heavy metals hinders FDA approval in the United States. We developed a small ultra-red fluorescent protein, named smURFP, to have optical properties similar to the small-molecule Cy5, a heptamethine subclass of cyanine dyes (Ex/Em = 642/670 nm). smURFP has a fluorescence quantum yield of 18% and expresses so well in E. coli, that gram quantities of fluorescent protein are purified from cultures in the laboratory. In this research, the fluorescent protein smURFP was combined with bovine serum albumin into fluorescent protein nanoparticles. These nanoparticles are fluorescent with a quantum yield of 17% and 12-14 nm in diameter. The far-red fluorescent protein nanoparticles noninvasively image tumors in living mice via the enhanced permeation and retention (EPR) mechanism. This manuscript describes the use of a new fluorescent protein nanoparticle for in vivo fluorescent imaging. This protein nanoparticle core should prove useful as a biomacromolecular scaffold, which could bear extended chemical modifications for studies, such as the in vivo imaging of fluorescent protein nanoparticles targeted to primary and metastatic cancer, theranostic treatment, and/or dual-modality imaging with positron emission tomography for entire human imaging.


Assuntos
Corantes Fluorescentes , Proteínas Luminescentes , Neoplasias Pulmonares , Nanopartículas/química , Imagem Óptica , Células A549 , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/farmacologia , Xenoenxertos , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/farmacocinética , Proteínas Luminescentes/farmacologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA