Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 119(45): 11084-93, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26488461

RESUMO

Additives to hydrocarbon fuels are commonly explored to change the combustion dynamics, chemical distribution, and/or product integrity. Here we employ a novel aluminum-based molecular additive, Al(I) tetrameric cluster [AlBrNEt3]4 (Et = C2H5), to a hydrocarbon fuel and evaluate the resultant single-droplet combustion properties. This Al4 cluster offers a soluble alternative to nanoscale particulate additives that have recently been explored and may mitigate the observed problems of particle aggregation. Results show the [AlBrNEt3]4 additive to increase the burn rate constant of a toluene-diethyl ether fuel mixture by ∼20% in a room temperature oxygen environment with only 39 mM of active aluminum additive (0.16 wt % limited by additive solubility). In comparison, a roughly similar addition of nano-aluminum particulate shows no discernible difference in burn properties of the hydrocarbon fuel. High speed video shows the [AlBrNEt3]4 to induce microexplosive gas release events during the last ∼30% of the droplet combustion time. We attribute this to HBr gas release based on results of temperature-programmed reaction (TPR) experiments of the [AlBrNEt3]4 dosed with O2 and D2O. A possible mechanism of burn rate enhancement is presented that is consistent with microexplosion observations and TPR results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA