Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Cardiol ; 189: 49-55, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36508762

RESUMO

Patients with hypertrophic cardiomyopathy (HCM) have historically been restricted from athletic participation because of the perceived risk of sudden cardiac death. More contemporary research has highlighted the relative safety of competitive athletics with HCM. However, lack of published data on reference values for cardiopulmonary exercise testing (CPET) complicates clinical management and counseling on sports participation in the individual athlete. We conducted a single-center, retrospective cohort study to investigate CPET in athletes with HCM and clinical characteristics associated with objective measures of aerobic capacity. We identified 58 athletes with HCM (74% male, mean age 18 ± 3 years, mean left ventricular (LV) wall thickness 20 ± 7 mm). LV outflow tract obstruction was present in 22 (38%). A total of 15 (26%) athletes were taking a ß blocker (BB), but only 4 (7%) reported exertional symptoms. Overall, exercise capacity was mildly reduced, with a peak myocardial oxygen consumption (peak VO2) of 37.9 ml/min/kg (83% of predicted peak VO2). Both LV outflow tract obstruction and BB use were associated with reduced exercise capacity. Limited peak heart rate was more common in athletes taking BB (47% vs 9%, p = 0.002). At a mean 5.6 years follow-up, 5 patients underwent myectomy (9%), and 8 (14%) received an implantable cardioverter defibrillator (ICD) for primary prevention. One individual with massive LV hypertrophy experienced recurrent ICD shocks for ventricular fibrillation and underwent myectomy 7 years after initial evaluation and was no longer participating in sports. There were no deaths over the follow-up period. In conclusion, the prognostic role of CPET remains unclear in athletes with HCM. Mildly reduced exercise capacity was common; however, reduced peak VO2 did not correlate with symptom status or clinical outcomes. A significant proportion went on to require myectomy and/or ICD, thus highlighting the need for close follow-up. These data provide some initial insight into the clinical evaluation of "real world" athletes with HCM; however, further study is warranted to help guide shared decision-making, return-to-play discussions, and the potential long-term safety of competitive athletic participation.


Assuntos
Cardiomiopatia Hipertrófica , Teste de Esforço , Humanos , Masculino , Adolescente , Adulto Jovem , Adulto , Feminino , Estudos Retrospectivos , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/terapia , Cardiomiopatia Hipertrófica/complicações , Arritmias Cardíacas/complicações , Atletas , Morte Súbita Cardíaca/prevenção & controle , Antagonistas Adrenérgicos beta
2.
Prog Cardiovasc Dis ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37211198

RESUMO

BACKGROUND: Dyspnea and fatigue are characteristics of long SARS-CoV-2 (COVID)-19. Cardiopulmonary exercise testing (CPET) can be used to better evaluate such patients. RESEARCH QUESTION: How significantly and by what mechanisms is exercise capacity impaired in patients with long COVID who are coming to a specialized clinic for evaluation? STUDY DESIGN AND METHODS: We performed a cohort study using the Mayo Clinic exercise testing database. Subjects included consecutive long COVID patients without prior history of heart or lung disease sent from the Post-COVID Care Clinic for CPET. They were compared to a historical group of non-COVID patients with undifferentiated dyspnea also without known cardiac or pulmonary disease. Statistical comparisons were performed by t-test or Pearson's chi2 test controlling for age, sex, and beta blocker use where appropriate. RESULTS: We found 77 patients with long COVID and 766 control patients. Long COVID patients were younger (47 ± 15 vs 50 ± 10 years, P < .01) and more likely female (70% vs 58%, P < .01). The most prominent difference on CPETs was lower percent predicted peak V̇O2 (73 ± 18 vs 85 ± 23%, p < .0001). Autonomic abnormalities (resting tachycardia, CNS changes, low systolic blood pressure) were seen during CPET more commonly in long COVID patients (34 vs 23%, P < .04), while mild pulmonary abnormalities (mild desaturation, limited breathing reserve, elevated V̇E/V̇CO2) during CPET were similar (19% in both groups) with only 1 long COVID patient showing severe impairment. INTERPRETATION: We identified severe exercise limitation among long COVID patients. Young women may be at higher risk for these complications. Though mild pulmonary and autonomic impairment were common in long COVID patients, marked limitations were uncommon. We hope our observations help to untangle the physiologic abnormalities responsible for the symptomatology of long COVID.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA