Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(17): E4006-E4012, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632188

RESUMO

Patagonia was the last region of the Americas reached by humans who entered the continent from Siberia ∼15,000-20,000 y ago. Despite recent genomic approaches to reconstruct the continental evolutionary history, regional characterization of ancient and modern genomes remains understudied. Exploring the genomic diversity within Patagonia is not just a valuable strategy to gain a better understanding of the history and diversification of human populations in the southernmost tip of the Americas, but it would also improve the representation of Native American diversity in global databases of human variation. Here, we present genome data from four modern populations from Central Southern Chile and Patagonia (n = 61) and four ancient maritime individuals from Patagonia (∼1,000 y old). Both the modern and ancient individuals studied in this work have a greater genetic affinity with other modern Native Americans than to any non-American population, showing within South America a clear structure between major geographical regions. Native Patagonian Kawéskar and Yámana showed the highest genetic affinity with the ancient individuals, indicating genetic continuity in the region during the past 1,000 y before present, together with an important agreement between the ethnic affiliation and historical distribution of both groups. Lastly, the ancient maritime individuals were genetically equidistant to a ∼200-y-old terrestrial hunter-gatherer from Tierra del Fuego, which supports a model with an initial separation of a common ancestral group to both maritime populations from a terrestrial population, with a later diversification of the maritime groups.


Assuntos
Variação Genética , Genoma Humano , Indígenas Sul-Americanos/genética , Chile , Feminino , História Antiga , Humanos , Indígenas Sul-Americanos/história , Masculino
2.
Am J Phys Anthropol ; 170(3): 451-458, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31396964

RESUMO

OBJECTIVES: Andean and Tibetan high-altitude natives exhibit a high concentration of nitric oxide (NO) in the lungs, suggesting that NO plays an adaptive role in offsetting hypobaric hypoxia. We examined the exhaled NO concentration as well as partial pressure of several additional high-altitude native populations in order to examine the possibility that this putative adaptive trait, that is, high exhaled NO, is universal. METHODS: We recruited two geographically diverse highland native populations, Tawang Monpa (TM), a Tibetan derived population in North-Eastern India (n = 95, sampled at an altitude of ~3,200 m), and Peruvian Quechua from the highland Andes (n = 412). The latter included three distinct subgroups defined as those residing at altitude (Q-HAR, n = 110, sampled at 4,338 m), those born and residing at sea-level (Q-BSL, n = 152), and those born at altitude but migrant to sea-level (Q-M, n = 150). In addition, we recruited a referent sample of lowland natives of European ancestry from Syracuse, New York. Fraction of exhaled NO concentrations were measured using a NIOX NIMO following the protocol of the manufacturer. RESULTS: Partial pressure of exhaled nitric oxide (PENO) was significantly lower (p < .05) in both high-altitude resident groups (TM = 6.2 ± 0.5 nmHg and Q-HAR = 5.8 ± 0.5 nmHg), as compared to the groups measured at sea level (USA = 14.6 ± 0.7 nmHg, Q-BSL = 18.9 ± 1.6 nmHg, and Q-M = 19.2 ± 1.7 nmHg). PENO was not significantly different between TM and Q-HAR (p < .05). CONCLUSION: In contrast to previous work, we found lower PENO in populations at altitude (compared to sea-level) and no difference in PENO between Tibetan and Andean highland native populations. These results do not support the hypothesis that high nitric oxide in human lungs is a universal adaptive mechanism of highland native populations to offset hypobaric hypoxia.


Assuntos
Expiração , Óxido Nítrico/metabolismo , Adaptação Fisiológica , Adulto , Altitude , Feminino , Humanos , Índia , Indígenas Sul-Americanos , Masculino , Peru , Tibet/etnologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA