Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(7): 4351-4356, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334376

RESUMO

Artificial ion transporters have been explored both as tools for studying fundamental ion transport processes and as potential therapeutics for cancer and channelopathies. Here we demonstrate that synthetic transporters may also be used to regulate the transport of catalytic metal ions across lipid membranes and thus control chemical reactivity inside lipid-bound compartments. We show that acyclic lipophilic pyridyltriazoles enable Pd(II) cations to be transported from the external aqueous phase across the lipid bilayer and into the interior of large unilamellar vesicles. In situ reduction generates Pd(0) species, which catalyze the generation of a fluorescent product. Photocaging the Pd(II) transporter allows for photoactivation of the transport process and hence photocontrol over the internal catalysis process. This work demonstrates that artificial transporters enable control over catalysis inside artificial cell-like systems, which could form the basis of biocompatible nanoreactors for applications such as drug synthesis and delivery or to mediate phototargeted catalyst delivery into cells.


Assuntos
Bicamadas Lipídicas , Elementos de Transição , Transporte de Íons , Transporte Biológico , Cátions , Catálise
2.
J Am Chem Soc ; 145(4): 2572-2583, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656915

RESUMO

Hypoxia (low oxygen levels) occurs in a range of biological contexts, including plants, bacterial biofilms, and solid tumors; it elicits responses from these biological systems that impact their survival. For example, conditions of low oxygen make treating tumors more difficult and have a negative impact on patient prognosis. Therefore, chemical probes that enable the study of biological hypoxia are valuable tools to increase the understanding of disease-related conditions that involve low oxygen levels, ultimately leading to improved diagnosis and treatment. While small-molecule hypoxia-sensing probes exist, the majority of these image only very severe hypoxia (<1% O2) and therefore do not give a full picture of heterogeneous biological hypoxia. Commonly used antibody-based imaging tools for hypoxia are less convenient than small molecules, as secondary detection steps involving immunostaining are required. Here, we report the synthesis, electrochemical properties, photophysical analysis, and biological validation of a range of indolequinone-based bioreductive fluorescent probes. We show that these compounds image different levels of hypoxia in 2D and 3D cell cultures. The resorufin-based probe 2 was activated in conditions of 4% O2 and lower, while the Me-Tokyo Green-based probe 4 was only activated in severe hypoxia─0.5% O2 and less. Simultaneous application of these compounds in spheroids revealed that compound 2 images similar levels of hypoxia to pimonidazole, while compound 4 images more extreme hypoxia in a manner analogous to EF5. Compounds 2 and 4 are therefore useful tools to study hypoxia in a cellular setting and represent convenient alternatives to antibody-based imaging approaches.


Assuntos
Hipóxia , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Oxigênio/análise , Corantes Fluorescentes/química , Hipóxia Celular
3.
Nucleic Acids Res ; 46(14): e86, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29846708

RESUMO

We are just beginning to unravel the myriad of interactions in which non-coding RNAs participate. The intricate RNA interactome is the foundation of many biological processes, including bacterial virulence and human disease, and represents unexploited resources for the development of potential therapeutic interventions. However, identifying specific associations of a given RNA from the multitude of possible binding partners within the cell requires robust high-throughput systems for their rapid screening. Here, we present the first demonstration of functional-RNA arrays as a novel platform technology designed for the study of such interactions using immobilized, active RNAs. We have generated high-density RNA arrays by an innovative method involving surface-capture of in vitro transcribed RNAs. This approach has significant advantages over existing technologies, particularly in its versatility in regards to binding partner character. Indeed, proof-of-principle application of RNA arrays to both RNA-small molecule and RNA-RNA pairings is demonstrated, highlighting their potential as a platform technology for mapping RNA-based networks and for pharmaceutical screening. Furthermore, the simplicity of the method supports greater user-accessibility over currently available technologies. We anticipate that functional-RNA arrays will find broad utility in the expanding field of RNA characterization.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pequeno RNA não Traduzido/análise , Regiões 5' não Traduzidas , Aptâmeros de Nucleotídeos/análise , RNA Bacteriano/análise
4.
Angew Chem Int Ed Engl ; 58(50): 17930-17952, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30633431

RESUMO

Epigenetics is currently the focus of intense research interest across a broad range of disciplines due to its importance in a multitude of biological processes and disease states. Epigenetic functions result partly from modification of the nucleobases in DNA and RNA, and/or post-translational modifications of histone proteins. These modifications are dynamic, with cellular machinery identified to modulate and interpret the marks. Our focus is on bromodomains, which bind to acetylated lysine residues. Progress in the study of bromodomains, and the development of bromodomain ligands, has been rapid. These advances have been underpinned by many disciplines, but chemistry and chemical biology have undoubtedly played a significant role. Herein, we review the key chemistry and chemical biology approaches that have furthered our study of bromodomains, enabled the development of bromodomain ligands, and played a critical role in the validation of bromodomains as therapeutic targets.


Assuntos
Epigenômica/métodos , Biologia Molecular/métodos , Domínios Proteicos/genética , Acetilação , Aminoácidos/química , Aminoácidos/metabolismo , Sistemas CRISPR-Cas , Epigênese Genética , Histonas/metabolismo , Ligantes , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Sondas Moleculares/química , Testes de Mutagenicidade
5.
Bioorg Med Chem ; 26(11): 2937-2957, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29776834

RESUMO

Ligands for the bromodomain and extra-terminal domain (BET) family of bromodomains have shown promise as useful therapeutic agents for treating a range of cancers and inflammation. Here we report that our previously developed 3,5-dimethylisoxazole-based BET bromodomain ligand (OXFBD02) inhibits interactions of BRD4(1) with the RelA subunit of NF-κB, in addition to histone H4. This ligand shows a promising profile in a screen of the NCI-60 panel but was rapidly metabolised (t½â€¯= 39.8 min). Structure-guided optimisation of compound properties led to the development of the 3-pyridyl-derived OXFBD04. Molecular dynamics simulations assisted our understanding of the role played by an internal hydrogen bond in altering the affinity of this series of molecules for BRD4(1). OXFBD04 shows improved BRD4(1) affinity (IC50 = 166 nM), optimised physicochemical properties (LE = 0.43; LLE = 5.74; SFI = 5.96), and greater metabolic stability (t½â€¯= 388 min).


Assuntos
Proteínas Nucleares/química , Fatores de Transcrição/química , Bioensaio , Western Blotting , Proteínas de Ciclo Celular , Cristalografia por Raios X , Estabilidade de Medicamentos , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Concentração Inibidora 50 , Ligantes , Luciferases/química , Células MCF-7 , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
6.
Biochemistry ; 56(32): 4219-4234, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28656748

RESUMO

Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.


Assuntos
Monofosfato de Adenosina/química , Antiportadores de Potássio-Hidrogênio/química , Dobramento de Proteína , Multimerização Proteica , Shewanella/química , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Estrutura Quaternária de Proteína , Shewanella/genética , Shewanella/metabolismo
7.
Angew Chem Int Ed Engl ; 55(29): 8353-7, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27264992

RESUMO

A range of isoxazole-containing amino acids was synthesized that displaced acetyl-lysine-containing peptides from the BAZ2A, BRD4(1), and BRD9 bromodomains. Three of these amino acids were incorporated into a histone H4-mimicking peptide and their affinity for BRD4(1) was assessed. Affinities of the isoxazole-containing peptides are comparable to those of a hyperacetylated histone H4-mimicking cognate peptide, and demonstrated a dependence on the position at which the unnatural residue was incorporated. An isoxazole-based alkylating agent was developed to selectively alkylate cysteine residues in situ. Selective monoalkylation of a histone H4-mimicking peptide, containing a lysine to cysteine residue substitution (K12C), resulted in acetyl-lysine mimic incorporation, with high affinity for the BRD4 bromodomain. The same technology was used to alkylate a K18C mutant of histone H3.

8.
Biochemistry ; 53(12): 1982-92, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24601535

RESUMO

The potassium efflux system, Kef, protects bacteria against the detrimental effects of electrophilic compounds via acidification of the cytoplasm. Kef is inhibited by glutathione (GSH) but activated by glutathione-S-conjugates (GS-X) formed in the presence of electrophiles. GSH and GS-X bind to overlapping sites on Kef, which are located in a cytosolic regulatory domain. The central paradox of this activation mechanism is that GSH is abundant in cells (at concentrations of ∼10-20 mM), and thus, activating ligands must possess a high differential over GSH in their affinity for Kef. To investigate the structural requirements for binding of a ligand to Kef, a novel fluorescent reporter ligand, S-{[5-(dimethylamino)naphthalen-1-yl]sulfonylaminopropyl} glutathione (DNGSH), was synthesized. By competition assays using DNGSH, complemented by direct binding assays and thermal shift measurements, we show that the well-characterized Kef activator, N-ethylsuccinimido-S-glutathione, has a 10-20-fold higher affinity for Kef than GSH. In contrast, another native ligand that is a poor activator, S-lactoylglutathione, exhibits a similar Kef affinity to GSH. Synthetic ligands were synthesized to contain either rigid or flexible structures and investigated as ligands for Kef. Compounds with rigid structures and high affinity activated Kef. In contrast, flexible ligands with similar binding affinities did not activate Kef. These data provide insight into the structural requirements for Kef gating, paving the way for the development of a screen for potential therapeutic lead compounds targeting the Kef system.


Assuntos
Proteínas de Escherichia coli/química , Glutationa/análogos & derivados , Antiportadores de Potássio-Hidrogênio/química , Potássio/química , Succinimidas/química , Transporte Biológico Ativo/fisiologia , Proteínas de Escherichia coli/metabolismo , Glutationa/química , Glutationa/metabolismo , Ativação do Canal Iônico/fisiologia , Ligantes , Potássio/metabolismo , Antiportadores de Potássio-Hidrogênio/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Shewanella/química , Shewanella/metabolismo , Succinimidas/metabolismo
9.
J Am Chem Soc ; 136(26): 9308-19, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24946055

RESUMO

Small-molecule inhibitors that target bromodomains outside of the bromodomain and extra-terminal (BET) sub-family are lacking. Here, we describe highly potent and selective ligands for the bromodomain module of the human lysine acetyl transferase CBP/p300, developed from a series of 5-isoxazolyl-benzimidazoles. Our starting point was a fragment hit, which was optimized into a more potent and selective lead using parallel synthesis employing Suzuki couplings, benzimidazole-forming reactions, and reductive aminations. The selectivity of the lead compound against other bromodomain family members was investigated using a thermal stability assay, which revealed some inhibition of the structurally related BET family members. To address the BET selectivity issue, X-ray crystal structures of the lead compound bound to the CREB binding protein (CBP) and the first bromodomain of BRD4 (BRD4(1)) were used to guide the design of more selective compounds. The crystal structures obtained revealed two distinct binding modes. By varying the aryl substitution pattern and developing conformationally constrained analogues, selectivity for CBP over BRD4(1) was increased. The optimized compound is highly potent (Kd = 21 nM) and selective, displaying 40-fold selectivity over BRD4(1). Cellular activity was demonstrated using fluorescence recovery after photo-bleaching (FRAP) and a p53 reporter assay. The optimized compounds are cell-active and have nanomolar affinity for CBP/p300; therefore, they should be useful in studies investigating the biological roles of CBP and p300 and to validate the CBP and p300 bromodomains as therapeutic targets.


Assuntos
Proteína de Ligação a CREB/química , Proteína p300 Associada a E1A/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Técnicas de Química Sintética , Cristalografia por Raios X , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Proteína p300 Associada a E1A/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Genes p53 , Células HeLa/efeitos dos fármacos , Humanos , Indóis/química , Isoxazóis/química , Ligantes , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
10.
Angew Chem Int Ed Engl ; 53(24): 6126-30, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24821300

RESUMO

The benzoxazinone and dihydroquinoxalinone fragments were employed as novel acetyl lysine mimics in the development of CREBBP bromodomain ligands. While the benzoxazinone series showed low affinity for the CREBBP bromodomain, expansion of the dihydroquinoxalinone series resulted in the first potent inhibitors of a bromodomain outside the BET family. Structural and computational studies reveal that an internal hydrogen bond stabilizes the protein-bound conformation of the dihydroquinoxalinone series. The side chain of this series binds in an induced-fit pocket forming a cation-π interaction with R1173 of CREBBP. The most potent compound inhibits binding of CREBBP to chromatin in U2OS cells.


Assuntos
Proteína de Ligação a CREB/genética , Cátions/química , Epigenômica/métodos , Ligantes , Modelos Moleculares , Ligação Proteica
11.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559242

RESUMO

Immunomodulatory imide drugs (IMiDs) including thalidomide, lenalidomide, and pomalidomide, can be used to induce degradation of a protein of interest that is fused to a short zinc finger (ZF) degron motif. These IMiDs, however, also induce degradation of endogenous neosubstrates, including IKZF1 and IKZF3. To improve degradation selectivity, we took a bump-and-hole approach to design and screen bumped IMiD analogs against 8380 ZF mutants. This yielded a bumped IMiD analog that induces efficient degradation of a mutant ZF degron, while not affecting other cellular proteins, including IKZF1 and IKZF3. In proof-of-concept studies, this system was applied to induce efficient degradation of TRIM28, a disease-relevant protein with no known small molecule binders. We anticipate that this system will make a valuable addition to the current arsenal of degron systems for use in target validation.

12.
Proc Natl Acad Sci U S A ; 107(46): 19784-9, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21041667

RESUMO

Gram negative pathogens are protected against toxic electrophilic compounds by glutathione-gated potassium efflux systems (Kef) that modulate cytoplasmic pH. We have elucidated the mechanism of gating through structural and functional analysis of Escherichia coli KefC. The revealed mechanism can explain how subtle chemical differences in glutathione derivatives can produce opposite effects on channel function. Kef channels are regulated by potassium transport and NAD-binding (KTN) domains that sense both reduced glutathione, which inhibits Kef activity, and glutathione adducts that form during electrophile detoxification and activate Kef. We find that reduced glutathione stabilizes an interdomain association between two KTN folds, whereas large adducts sterically disrupt this interaction. F441 is identified as the pivotal residue discriminating between reduced glutathione and its conjugates. We demonstrate a major structural change on the binding of an activating ligand to a KTN-domain protein. Analysis of the regulatory interactions suggests strategies to disrupt pathogen potassium and pH homeostasis.


Assuntos
Escherichia coli/metabolismo , Ativação do Canal Iônico/fisiologia , Potássio/metabolismo , Sequência de Aminoácidos , Transporte Biológico/efeitos dos fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Glutationa/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Succinimidas/farmacologia
13.
JACS Au ; 3(11): 3237-3246, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38034969

RESUMO

Regions of hypoxia occur in most tumors and are a predictor of poor patient prognosis. Hypoxia-activated prodrugs (HAPs) provide an ideal strategy to target the aggressive, hypoxic, fraction of a tumor, while protecting the normal tissue from toxicity. A key challenge associated with the development of novel HAPs, however, is the ability to visualize the delivery of the prodrug to hypoxic regions and determine where it has been activated. Here, we report a modified version of the commonly used nitroimidazole bioreductive group that incorporates the fluoroethyl epitope of the antibody-based hypoxia imaging agent, EF5. Attachment of this group to the red fluorescent dye, dicyanomethylene (DCM), enabled us to correlate the release of the DCM dye with imaging of the reduced bioreductive group using the EF5 antibody. This study confirmed that the antibody was imaging reduction and fragmentation of the pro-fluorophore. We next employed the modified bioreductive group to synthesize a new prodrug of the KDAC inhibitor Panobinostat, EF5-Pano. Release of EF5-Pano in hypoxic multiple myeloma cells was imaged using the EF5 antibody, and the presence of an imaging signal correlated with apoptosis and a reduction in cell viability. Therefore, EF5-Pano is an imageable HAP with a proven cytotoxic effect in multiple myeloma, which could be utilized in future in vivo experiments.

14.
J Med Chem ; 66(23): 15801-15822, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38048437

RESUMO

Schistosomiasis is a disease affecting >200 million people worldwide, but its treatment relies on a single agent, praziquantel. To investigate new avenues for schistosomiasis control, we have conducted the first systematic analysis of bromodomain-containing proteins (BCPs) in a causative species, Schistosoma mansoni. Having identified 29 putative bromodomains (BRDs) in 22 S. mansoni proteins, we selected SmBRD3, a tandem BRD-containing BCP that shows high similarity to the human bromodomain and extra terminal domain (BET) family, for further studies. Screening 697 small molecules identified the human BET BRD inhibitor I-BET726 as a ligand for SmBRD3. An X-ray crystal structure of I-BET726 bound to the second BRD of SmBRD3 [SmBRD3(2)] enabled rational design of a quinoline-based ligand (15) with an ITC Kd = 364 ± 26.3 nM for SmBRD3(2). The ethyl ester pro-drug of compound 15 (compound 22) shows substantial effects on sexually immature larval schistosomula, sexually mature adult worms, and snail-infective miracidia in ex vivo assays.


Assuntos
Esquistossomose mansoni , Esquistossomose , Animais , Feminino , Humanos , Schistosoma mansoni , Oviposição , Ligantes , Esquistossomose mansoni/tratamento farmacológico
15.
ACS Infect Dis ; 9(11): 2340-2357, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37906637

RESUMO

Leishmaniases are a collection of neglected tropical diseases caused by kinetoplastid parasites in the genus Leishmania. Current chemotherapies are severely limited, and the need for new antileishmanials is of pressing international importance. Bromodomains are epigenetic reader domains that have shown promising therapeutic potential for cancer therapy and may also present an attractive target to treat parasitic diseases. Here, we investigate Leishmania donovani bromodomain factor 5 (LdBDF5) as a target for antileishmanial drug discovery. LdBDF5 contains a pair of bromodomains (BD5.1 and BD5.2) in an N-terminal tandem repeat. We purified recombinant bromodomains of L. donovani BDF5 and determined the structure of BD5.2 by X-ray crystallography. Using a histone peptide microarray and fluorescence polarization assay, we identified binding interactions of LdBDF5 bromodomains with acetylated peptides derived from histones H2B and H4. In orthogonal biophysical assays including thermal shift assays, fluorescence polarization, and NMR, we showed that BDF5 bromodomains bind to human bromodomain inhibitors SGC-CBP30, bromosporine, and I-BRD9; moreover, SGC-CBP30 exhibited activity against Leishmania promastigotes in cell viability assays. These findings exemplify the potential BDF5 holds as a possible drug target in Leishmania and provide a foundation for the future development of optimized antileishmanial compounds targeting this epigenetic reader protein.


Assuntos
Antiprotozoários , Fator V , Humanos , Fator V/metabolismo , Histonas/química , Histonas/metabolismo , Domínios Proteicos , Antiprotozoários/farmacologia , Descoberta de Drogas , Fatores de Transcrição/metabolismo
16.
ACS Chem Biol ; 18(11): 2405-2417, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37874862

RESUMO

Target validation remains a challenge in drug discovery, which leads to a high attrition rate in the drug discovery process, particularly in Phase II clinical trials. Consequently, new approaches to enhance target validation are valuable tools to improve the drug discovery process. Here, we report the combination of site-directed mutagenesis and electrophilic fragments to enable the rapid identification of small molecules that selectively inhibit the mutant protein. Using the bromodomain-containing protein BRD4 as an example, we employed a structure-based approach to identify the L94C mutation in the first bromodomain of BRD4 [BRD4(1)] as having a minimal effect on BRD4(1) function. We then screened a focused, KAc mimic-containing fragment set and a diverse fragment library against the mutant and wild-type proteins and identified a series of fragments that showed high selectivity for the mutant protein. These compounds were elaborated to include an alkyne click tag to enable the attachment of a fluorescent dye. These clickable compounds were then assessed in HEK293T cells, transiently expressing BRD4(1)WT or BRD4(1)L94C, to determine their selectivity for BRD4(1)L94C over other possible cellular targets. One compound was identified that shows very high selectivity for BRD4(1)L94C over all other proteins. This work provides a proof-of-concept that the combination of site-directed mutagenesis and electrophilic fragments, in a mutate and conjugate approach, can enable rapid identification of small molecule inhibitors for an appropriately mutated protein of interest. This technology can be used to assess the cellular phenotype of inhibiting the protein of interest, and the electrophilic ligand provides a starting point for noncovalent ligand development.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligantes , Células HEK293 , Fatores de Transcrição/metabolismo , Proteínas Mutantes , Proteínas de Ciclo Celular/genética
17.
Proc Natl Acad Sci U S A ; 106(27): 11406-11, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19549843

RESUMO

Cardiac hypertrophy is a growth response of the heart to increased hemodynamic demand or damage. Accompanying this heart enlargement is a remodeling of Ca(2+) signaling. Due to its fundamental role in controlling cardiomyocyte contraction during every heartbeat, modifications in Ca(2+) fluxes significantly impact on cardiac output and facilitate the development of arrhythmias. Using cardiomyocytes from spontaneously hypertensive rats (SHRs), we demonstrate that an increase in Ca(2+) release through inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) contributes to the larger excitation contraction coupling (ECC)-mediated Ca(2+) transients characteristic of hypertrophic myocytes and underlies the more potent enhancement of ECC-mediated Ca(2+) transients and contraction elicited by InsP(3) or endothelin-1 (ET-1). Responsible for this is an increase in InsP(3)R expression in the junctional sarcoplasmic reticulum. Due to their close proximity to ryanodine receptors (RyRs) in this region, enhanced Ca(2+) release through InsP(3)Rs served to sensitize RyRs, thereby increasing diastolic Ca(2+) levels, the incidence of extra-systolic Ca(2+) transients, and the induction of ECC-mediated Ca(2+) elevations. Unlike the increase in InsP(3)R expression and Ca(2+) transient amplitude in the cytosol, InsP(3)R expression and ECC-mediated Ca(2+) transients in the nucleus were not altered during hypertrophy. Elevated InsP(3)R2 expression was also detected in hearts from human patients with heart failure after ischemic dilated cardiomyopathy, as well as in aortic-banded hypertrophic mouse hearts. Our data establish that increased InsP(3)R expression is a general mechanism that underlies remodeling of Ca(2+) signaling during heart disease, and in particular, in triggering ventricular arrhythmia during hypertrophy.


Assuntos
Arritmias Cardíacas/complicações , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Cardiomegalia/complicações , Cardiomegalia/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Retículo Sarcoplasmático/metabolismo , Adulto , Animais , Cálcio/metabolismo , Diástole , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Junções Intercelulares/metabolismo , Cinética , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Sístole
18.
ACS Chem Biol ; 17(10): 2753-2768, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36098557

RESUMO

TRIM33 is a member of the tripartite motif (TRIM) family of proteins, some of which possess E3 ligase activity and are involved in the ubiquitin-dependent degradation of proteins. Four of the TRIM family proteins, TRIM24 (TIF1α), TRIM28 (TIF1ß), TRIM33 (TIF1γ) and TRIM66, contain C-terminal plant homeodomain (PHD) and bromodomain (BRD) modules, which bind to methylated lysine (KMen) and acetylated lysine (KAc), respectively. Here we investigate the differences between the two isoforms of TRIM33, TRIM33α and TRIM33ß, using structural and biophysical approaches. We show that the N1039 residue, which is equivalent to N140 in BRD4(1) and which is conserved in most BRDs, has a different orientation in each isoform. In TRIM33ß, this residue coordinates KAc, but this is not the case in TRIM33α. Despite these differences, both isoforms show similar affinities for H31-27K18Ac, and bind preferentially to H31-27K9Me3K18Ac. We used this information to develop an AlphaScreen assay, with which we have identified four new ligands for the TRIM33 PHD-BRD cassette. These findings provide fundamental new information regarding which histone marks are recognized by both isoforms of TRIM33 and suggest starting points for the development of chemical probes to investigate the cellular function of TRIM33.


Assuntos
Histonas , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Lisina/metabolismo , Peptídeo T/metabolismo , Ligantes , Proteínas de Ligação a DNA/metabolismo , Ubiquitinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
19.
J Bacteriol ; 193(18): 4925-32, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21742892

RESUMO

Escherichia coli and many other Gram-negative pathogenic bacteria protect themselves from the toxic effects of electrophilic compounds by using a potassium efflux system (Kef). Potassium efflux is coupled to the influx of protons, which lowers the internal pH and results in immediate protection. The activity of the Kef system is subject to complex regulation by glutathione and its S conjugates. Full activation of KefC requires a soluble ancillary protein, KefF. This protein has structural similarities to oxidoreductases, including human quinone reductases 1 and 2. Here, we show that KefF has enzymatic activity as an oxidoreductase, in addition to its role as the KefC activator. It accepts NADH and NADPH as electron donors and quinones and ferricyanide (in addition to other compounds) as acceptors. However, typical electrophilic activators of the Kef system, e.g., N-ethyl maleimide, are not substrates. If the enzymatic activity is disrupted by site-directed mutagenesis while retaining structural integrity, KefF is still able to activate the Kef system, showing that the role as an activator is independent of the enzyme activity. Potassium efflux assays show that electrophilic quinones are able to activate the Kef system by forming S conjugates with glutathione. Therefore, it appears that the enzymatic activity of KefF diminishes the redox toxicity of quinones, in parallel with the protection afforded by activation of the Kef system.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredutases/metabolismo , Benzoquinonas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ferricianetos/metabolismo , Humanos , Mutagênese Sítio-Dirigida , NAD/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , NADP/metabolismo , Oxirredutases/genética , Potássio/metabolismo , Canais de Potássio/metabolismo , Subunidades Proteicas/metabolismo
20.
Biochem Soc Trans ; 39(4): 868-73, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21787315

RESUMO

It is well established that the intracellular accumulation of Aß (amyloid ß-peptide) is associated with AD (Alzheimer's disease) and that this accumulation is toxic to neurons. The precise mechanism by which this toxicity occurs is not well understood; however, identifying the causes of this toxicity is an essential step towards developing treatments for AD. One intracellular location where the accumulation of Aß can have a major effect is within mitochondria, where mitochondrial proteins have been identified that act as binding sites for Aß, and when binding occurs, a toxic response results. At one of these identified sites, an enzyme known as ABAD (amyloid-binding alcohol dehydrogenase), we have identified changes in gene expression in the brain cortex, following Aß accumulation within mitochondria. Specifically, we have identified two proteins that are up-regulated not only in the brains of transgenic animal models of AD but also in those of human sufferers. The increased expression of these proteins demonstrates the complex and counteracting pathways that are activated in AD. Previous studies have identified approximate contact sites between ABAD and Aß; on basis of these observations, we have shown that by using a modified peptide approach it is possible to reverse the expression of these two proteins in living transgenic animals and also to recover mitochondrial and behavioural deficits. This indicates that the ABAD-Aß interaction is potentially an interesting target for therapeutic intervention. To explore this further we used a fluorescing substrate mimic to measure the activity of ABAD within living cells, and in addition we have identified chemical fragments that bind to ABAD, using a thermal shift assay.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Modelos Biológicos , Peptidilprolil Isomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA