RESUMO
The gut microbiome plays a critical role in the development, progression, and treatment of cancer. As interest in microbiome-immune-cancer interactions expands, the prevalence of fecal microbial transplant (FMT) models has increased proportionally. However, current literature does not provide adequate details or consistent approaches to allow for necessary rigor and experimental reproducibility. In this review, we evaluate key studies using FMT to investigate the relationship between the gut microbiome and various types of cancer. In addition, we will discuss the common pitfalls of these experiments and methods for improved standardization and validation as the field uses FMT with greater frequency. Finally, this review focuses on the impacts of the gut and extraintestinal microbes, prebiotics, probiotics, and postbiotics in cancer risk and response to therapy across a variety of tumor types.NEW & NOTEWORTHY The microbiome impacts the onset, progression, and therapy response of certain types of cancer. Fecal microbial transplants (FMTs) are an increasingly prevalent tool to test these mechanisms that require standardization by the field.
Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Neoplasias , Humanos , Transplante de Microbiota Fecal/métodos , Neoplasias/terapia , Neoplasias/microbiologia , Animais , Fezes/microbiologia , Probióticos/uso terapêuticoRESUMO
In utero dietary exposures are linked to the development of metabolic syndrome in adult offspring. These dietary exposures can potentially impact gut microbial composition and offspring metabolic health. Female BALB/c mice were administered a lard, lard + flaxseed oil, high sugar, or control diet 4 wk before mating, throughout mating, pregnancy, and lactation. Female offspring were offered low-fat control diet at weaning. Fecal 16S sequencing was performed. Untargeted metabolomics was performed on visceral adipose tissue (VAT) of adult female offspring. Immunohistochemistry was used to determine adipocyte size, VAT collagen deposition, and macrophage content. Hippurate was administered via weekly intraperitoneal injections to low-fat and high-fat diet-fed female mice and VAT fibrosis and collagen 1A (COL1A) were assessed by immunohistochemistry. Lard diet exposure was associated with elevated body and VAT weight and dysregulated glucose metabolism. Lard + flaxseed oil attenuated these effects. Lard diet exposures were associated with increased adipocyte diameter and VAT macrophage count. Lard + flaxseed oil reduced adipocyte diameter and fibrosis compared with the lard diet. Hippurate-associated bacteria were influenced by lard versus lard + flax exposures that persisted to adulthood. VAT hippurate was increased in lard + flaxseed oil compared with lard diet. Hippurate supplementation mitigated VAT fibrosis pathology. Maternal high-fat lard diet consumption resulted in long-term metabolic and gut microbiome programming in offspring, impacting VAT inflammation and fibrosis, and was associated with reduced VAT hippurate content. These traits were not observed in maternal high-fat lard + flaxseed oil diet-exposed offspring. Hippurate supplementation reduced VAT fibrosis. These data suggest that detrimental effects of early-life high-fat lard diet exposure can be attenuated by dietary omega-3 polyunsaturated fatty acid supplementation.
Assuntos
Microbioma Gastrointestinal , Gravidez , Camundongos , Feminino , Animais , Gordura Intra-Abdominal/metabolismo , Óleo de Semente do Linho/metabolismo , Exposição Dietética , Dieta Hiperlipídica/efeitos adversos , FibroseRESUMO
PURPOSE: Menopause is associated with an increased risk of estrogen receptor-positive (ER +) breast cancer. To characterize the metabolic shifts associated with reduced estrogen bioavailability on breast tissue, metabolomics was performed from ovary-intact and ovariectomized (OVX) female non-human primates (NHP). The effects of exogenous estrogen administration or estrogen receptor blockade (tamoxifen treatment) on menopause-induced metabolic changes were also investigated. METHODS: Bilateral ovariectomies were performed on female cynomolgus macaques (Macaca fascicularis) to model menopause. OVX NHP were then divided into untreated (n = 13), conjugated equine estrogen (CEE)-treated (n= 13), or tamoxifen-treated (n = 13) subgroups and followed for 3 years. Aged-matched ovary-intact female NHP (n = 12) were used as a premenopausal comparison group. Metabolomics was performed on snap-frozen breast tissue. RESULTS: Changes in several different metabolic biochemicals were noted, particularly in glucose and fatty acid metabolism. Specifically, glycolytic, Krebs cycle, acylcarnitines, and phospholipid metabolites were elevated in breast tissue from ovary-intact NHP and OVX + CEE in relation to the OVX and OVX + tamoxifen group. In contrast, treatment with CEE and tamoxifen decreased several cholesterol metabolites, compared to the ovary-intact and OVX NHP. These changes were accompanied by elevated bile acid metabolites in the ovary-intact group. CONCLUSION: Alterations in estrogen bioavailability are associated with changes in the mammary tissue metabolome, particularly in glucose and fatty acid metabolism. Changes in these pathways may represent a bioenergetic shift in gland metabolism at menopause that may affect breast cancer risk.
Assuntos
Neoplasias da Mama , Estrogênios , Terapia de Reposição Hormonal , Receptores de Estrogênio/antagonistas & inibidores , Idoso , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Terapia de Reposição de Estrogênios , Estrogênios Conjugados (USP) , Feminino , Humanos , Macaca fascicularis , Ovariectomia , Receptores de Estrogênio/genéticaRESUMO
Despite advances in cancer therapy, several persistent issues remain. These include cancer recurrence, effective targeting of aggressive or therapy-resistant cancers, and selective treatments for transformed cells. This review evaluates the current findings and highlights the potential of targeting the unfolded protein response to treat cancer. The unfolded protein response, an evolutionarily conserved pathway in all eukaryotes, is initiated in response to misfolded proteins accumulating within the lumen of the endoplasmic reticulum. This pathway is initially cytoprotective, allowing cells to survive stressful events; however, prolonged activation of the unfolded protein response also activates apoptotic responses. This balance is key in successful mammalian immune response and inducing cell death in malignant cells. We discuss how the unfolded protein response affects cancer progression, survival, and immune response to cancer cells. The literature shows that targeting the unfolded protein response as a monotherapy or in combination with chemotherapy or immunotherapies increases the efficacy of these drugs; however, systemic unfolded protein response targeting may yield deleterious effects on immune cell function and should be taken into consideration. The material in this review shows the promise of both approaches, each of which merits further research.
Assuntos
Estresse do Retículo Endoplasmático , Neoplasias/patologia , Microambiente Tumoral , Resposta a Proteínas não Dobradas , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , eIF-2 Quinase/metabolismoRESUMO
BACKGROUND: A perennial challenge in systemic cytotoxic cancer therapy is to eradicate primary tumors and metastatic disease while sparing normal tissue from off-target effects of chemotherapy. Anthracyclines such as doxorubicin are effective chemotherapeutic agents for which dosing is limited by development of cardiotoxicity. Our published evidence shows that targeting CD47 enhances radiation-induced growth delay of tumors while remarkably protecting soft tissues. The protection of cell viability observed with CD47 is mediated autonomously by activation of protective autophagy. However, whether CD47 protects cancer cells from cytotoxic chemotherapy is unknown. METHODS: We tested the effect of CD47 blockade on cancer cell survival using a 2-dimensional high-throughput cell proliferation assay in 4T1 breast cancer cell lines. To evaluate blockade of CD47 in combination with chemotherapy in vivo, we employed the 4T1 breast cancer model and examined tumor and cardiac tissue viability as well as autophagic flux. RESULTS: Our high-throughput screen revealed that blockade of CD47 does not interfere with the cytotoxic activity of anthracyclines against 4T1 breast cancer cells. Targeting CD47 enhanced the effect of doxorubicin chemotherapy in vivo by reducing tumor growth and metastatic spread by activation of an anti-tumor innate immune response. Moreover, systemic suppression of CD47 protected cardiac tissue viability and function in mice treated with doxorubicin. CONCLUSIONS: Our experiments indicate that the protective effects observed with CD47 blockade are mediated through upregulation of autophagic flux. However, the absence of CD47 in did not elicit a protective effect in cancer cells, but it enhanced macrophage-mediated cancer cell cytolysis. Therefore, the differential responses observed with CD47 blockade are due to autonomous activation of protective autophagy in normal tissue and enhancement immune cytotoxicity against cancer cells.
Assuntos
Antraciclinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antígeno CD47/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Antígeno CD47/imunologia , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologiaRESUMO
We have previously described the process by which mitochondria donate their membranes for the formation of autophagosomes, and in this study we show that the same process could be involved in drug sequestration and exocytosis resulting in multidrug-resistant cancerous cells. We examine the implications of mitochondrial vesicle formation of mitoautophagosomes (MAPS) in response to the cytotoxic drug MKT-077, which targets mortalin, in a drug-resistant breast carcinoma cell line overexpressing P-glycoprotein (P-gp). The breast cancer cell line MCF-7Adr is derived from MCF-7, but differs from its ancestral line in tolerance of MKT-077-induced mitochondrial toxicity. Our ultrastructural observations suggest that autophagy in the MCF-7Adr cells entails regional sequestration of MKT077 in multilamellar LC3-labeled MAPS, which then separate from their mitochondria, and fuse with or engulf each other. MAPS appeared to be migrating through the cytoplasm and fusing with the plasma membrane, thus carrying out exocytotic secretion. This mechanism, which seems ineffective in the ancestral cell line, provides a resistance mechanism for MKT-077 by enhancing the efflux process of the cells. After 8 hr of MKT-077 exposure, a fraction of the resistant cells appeared viable and contained larger number of smaller sized mitochondria. Mitoautophagosomes, therefore, provide a potentially novel model for multidrug resistance in cancerous cells and may contribute to the P-gp efflux process.
Assuntos
Autofagossomos/ultraestrutura , Neoplasias da Mama/ultraestrutura , Resistencia a Medicamentos Antineoplásicos/fisiologia , Mitocôndrias/ultraestrutura , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagossomos/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Piridinas/farmacologia , Tiazóis/farmacologiaRESUMO
Approximately 70% of all newly diagnosed breast cancers express estrogen receptor (ER)-α. Although inhibiting ER action using targeted therapies such as fulvestrant (ICI) is often effective, later emergence of antiestrogen resistance limits clinical use. We used antiestrogen-sensitive and -resistant cells to determine the effect of antiestrogens/ERα on regulating autophagy and unfolded protein response (UPR) signaling. Knockdown of ERα significantly increased the sensitivity of LCC1 cells (sensitive) and also resensitized LCC9 cells (resistant) to antiestrogen drugs. Interestingly, ERα knockdown, but not ICI, reduced nuclear factor (erythroid-derived 2)-like (NRF)-2 (UPR-induced antioxidant protein) and increased cytosolic kelch-like ECH-associated protein (KEAP)-1 (NRF2 inhibitor), consistent with the observed increase in ROS production. Furthermore, autophagy induction by antiestrogens was prosurvival but did not prevent ERα knockdown-mediated death. We built a novel mathematical model to elucidate the interactions among UPR, autophagy, ER signaling, and ROS regulation of breast cancer cell survival. The experimentally validated mathematical model explains the counterintuitive result that knocking down the main target of ICI (ERα) increased the effectiveness of ICI. Specifically, the model indicated that ERα is no longer present in excess and that the effect on proliferation from further reductions in its level by ICI cannot be compensated for by increased autophagy. The stimulation of signaling that can confer resistance suggests that combining autophagy or UPR inhibitors with antiestrogens would reduce the development of resistance in some breast cancers.
Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Moduladores de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/metabolismo , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estradiol/análogos & derivados , Estradiol/farmacologia , Feminino , Citometria de Fluxo , Fulvestranto , Humanos , Camundongos , Camundongos Nus , Microscopia Confocal , Modelos Teóricos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: About 70% of all breast cancers are estrogen receptor alpha positive (ER+) and are treated with antiestrogens. However, 50% of ER + tumors develop resistance to these drugs (endocrine resistance). In endocrine resistant cells, an adaptive pathway called the unfolded protein response (UPR) is elevated that allows cells to tolerate stress more efficiently than in sensitive cells. While the precise mechanism remains unclear, the UPR can trigger both pro-survival and pro-death outcomes that depend on the nature and magnitude of the stress. In this study, we identified MYC, an oncoprotein that is upregulated in endocrine resistant breast cancer, as a regulator of the UPR in glucose-deprived conditions. METHODS: ER+ human breast cancer cell lines (LCC1, LCC1, LY2 and LCC9) and rat mammary tumors were used to confirm upregulation of MYC in endocrine resistance. To evaluate functional relevance of proteins, siRNA-mediated inhibition or small molecule inhibitors were used. Cell density/number was evaluated with crystal violet assay; cell cycle and apoptosis were measured by flow cytometry. Relative quantification of glutamine metabolites were determined by mass spectrometry. Signaling molecules of the UPR, apoptosis or autophagy pathways were investigated by western blotting. RESULTS: Increased MYC function in resistant cells correlated with increased dependency on glutamine and glucose for survival. Inhibition of MYC reduced cell growth and uptake of both glucose and glutamine in resistant cells. Interestingly, in glucose-deprived conditions, glutamine induced apoptosis and necrosis, arrested autophagy, and triggered the unfolded protein response (UPR) though GRP78-IRE1α with two possible outcomes: (i) inhibition of cell growth by JNK activation in most cells and, (ii) promotion of cell growth by spliced XBP1 in the minority of cells. These disparate effects are regulated, at different signaling junctions, by MYC more robustly in resistant cells. CONCLUSIONS: Endocrine resistant cells overexpress MYC and are better adapted to withstand periods of glucose deprivation and can use glutamine in the short term to maintain adequate metabolism to support cell survival. Our findings reveal a unique role for MYC in regulating cell fate through the UPR, and suggest that targeting glutamine metabolism may be a novel strategy in endocrine resistant breast cancer.
Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estrogênios/farmacologia , Glucose/metabolismo , Glutamina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Moduladores de Receptor Estrogênico/farmacologia , Feminino , Humanos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
The importance of the gut microbiota in human health has become increasingly apparent in recent years, especially when the relationship between microbiota and host is no longer symbiotic. It has long been appreciated that gut dysbiosis can be detrimental to human health and is associated with numerous disease states. Only within the last decade, however, was the gut microbiota implicated in bone biology. Dubbed osteomicrobiology, this emerging field aims to understand the relationship between the gut microbiome and the bone microenvironment in both health and disease. Importantly, the key to one of the major clinical challenges facing both bone and cancer biologists: bone metastasis, may lie in the field of osteomicrobiology; however the link between gut bacteria and bone metastasis is only beginning to be explored. This review will discuss (i) osteomicrobiology as an emerging field, and (ii) the current understanding of osteomicrobiology in the context of cancer in bone.
RESUMO
Several studies indicate a strong link between obesity and the risk of breast cancer. Obesity decreases gut microbial biodiversity and modulates Bacteroidetes-to-Firmicutes phyla proportional abundance, suggesting that increased energy-harvesting capacity from indigestible dietary fibers and elevated lipopolysaccharide bioavailability may promote inflammation. To address the limited evidence linking diet-mediated changes in gut microbiota to breast cancer risk, we aimed to determine how diet affects the microbiome and breast cancer risk. For ten weeks, female 3-week-old BALB/c mice were fed six different diets (control, high-sugar, lard, coconut oil, lard + flaxseed oil, and lard + safflower oil). Fecal 16S sequencing was performed for each group. Diet shifted fecal microbiome populations and modulated mammary gland macrophage infiltration. Fecal-conditioned media shifted macrophage polarity and inflammation. In our DMBA-induced breast cancer model, diet differentially modulated tumor and mammary gland metabolism. We demonstrated how dietary patterns change metabolic outcomes and the gut microbiota, possibly contributing to breast tumor risk. Furthermore, we showed the influence of diet on metabolism, inflammation, and macrophage polarity. This study suggests that dietary-microbiome interactions are key mediators of breast cancer risk. Prevention Relevance: Our study demonstrates the impact of diet on breast cancer risk, focusing on the interplay between diet, the gut microbiome, and mammary gland inflammation.
Assuntos
Neoplasias da Mama , Dieta , Microbioma Gastrointestinal , Camundongos Endogâmicos BALB C , Animais , Feminino , Microbioma Gastrointestinal/fisiologia , Camundongos , Dieta/efeitos adversos , Neoplasias da Mama/microbiologia , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Inflamação/patologia , Inflamação/microbiologia , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Fezes/microbiologia , Fezes/química , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/metabolismo , HumanosRESUMO
BACKGROUND: Obesity, and in particular abdominal obesity, is associated with an increased risk of developing a variety of chronic diseases. Obesity, aging, and menopause are each associated with differential shifts in the gut microbiome. Obesity causes chronic low-grade inflammation due to increased lipopolysaccharide (LPS) levels which is termed "metabolic endotoxemia." We examined the association of visceral adiposity tissue (VAT) area, circulating endotoxemia markers, and the gut bacterial microbiome in a cohort of aged postmenopausal women. METHODS: Fifty postmenopausal women (mean age 78.8 ± 5.3 years) who had existing adipose measurements via dual x-ray absorptiometry (DXA) were selected from the extremes of VAT: n = 25 with low VAT area (45.6 ± 12.5 cm2) and n = 25 with high VAT area (177.5 ± 31.3 cm2). Dietary intake used to estimate the Healthy Eating Index (HEI) score was assessed with a food frequency questionnaire. Plasma LPS, LPS-binding protein (LBP), anti-LPS antibodies, anti-flagellin antibodies, and anti-lipoteichoic acid (LTA) antibodies were measured by ELISA. Metagenomic sequencing was performed on fecal DNA. Female C57BL/6 mice consuming a high-fat or low-fat diet were treated with 0.4 mg/kg diet-derived fecal isolated LPS modeling metabolic endotoxemia, and metabolic outcomes were measured after 6 weeks. RESULTS: Women in the high VAT group showed increased Proteobacteria abundance and a lower Firmicutes/Bacteroidetes ratio. Plasma LBP concentration was positively associated with VAT area. Plasma anti-LPS, anti-LTA, and anti-flagellin IgA antibodies were significantly correlated with adiposity measurements. Women with high VAT showed significantly elevated LPS-expressing bacteria compared to low VAT women. Gut bacterial species that showed significant associations with both adiposity and inflammation (anti-LPS IgA and LBP) were Proteobacteria (Escherichia coli, Shigella spp., and Klebsiella spp.) and Veillonella atypica. Healthy eating index (HEI) scores negatively correlated with % body fat and anti-LPS IgA antibodies levels. Preclinical murine model showed that high-fat diet-fed mice administered a low-fat diet fecal-derived LPS displayed reduced body weight, decreased % body fat, and improved glucose tolerance test parameters when compared with saline-injected or high-fat diet fecal-derived LPS-treated groups consuming a high-fat diet. CONCLUSIONS: Increased VAT in postmenopausal women is associated with elevated gut Proteobacteria abundance and immunogenic metabolic endotoxemia markers. Low-fat diet-derived fecal-isolated LPS improved metabolic parameters in high-fat diet-fed mice giving mechanistic insights into potential pro-health signaling mediated by under-acylated LPS isoforms. Video Abstract.
Assuntos
Endotoxemia , Microbioma Gastrointestinal , Lipopolissacarídeos , Pós-Menopausa , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Endotoxemia/imunologia , Endotoxemia/microbiologia , Humanos , Animais , Idoso , Camundongos , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/imunologia , Inflamação , Idoso de 80 Anos ou mais , Camundongos Endogâmicos C57BL , Adiposidade , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/genética , Proteínas de Fase Aguda/metabolismo , Fezes/microbiologia , Obesidade Abdominal/microbiologia , Obesidade Abdominal/imunologia , Absorciometria de Fóton , Proteínas de Transporte , Glicoproteínas de MembranaRESUMO
Bariatric surgery is associated with improved outcomes for several cancers, including breast cancer (BC), although the mechanisms mediating this protection are unknown. We hypothesized that elevated bile acid pools detected after bariatric surgery may be factors that contribute to improved BC outcomes. Patients with greater expression of the bile acid receptor FXR displayed improved survival in specific aggressive BC subtypes. FXR is a nuclear hormone receptor activated by primary bile acids. Therefore, we posited that activating FXR using an established FDA-approved agonist would induce anticancer effects. Using in vivo and in vitro approaches, we determined the anti-tumor potential of bile acid receptor agonism. Indeed, FXR agonism by the bile acid mimetic known commercially as Ocaliva ("OCA"), or Obeticholic acid (INT-747), significantly reduced BC progression and overall tumor burden in a pre-clinical model. The transcriptomic analysis of tumors in mice subjected to OCA treatment revealed differential gene expression patterns compared to vehicle controls. Notably, there was a significant down-regulation of the oncogenic transcription factor MAX (MYC-associated factor X), which interacts with the oncogene MYC. Gene set enrichment analysis (GSEA) further demonstrated a statistically significant downregulation of the Hallmark MYC-related gene set (MYC Target V1) following OCA treatment. In human and murine BC analyses in vitro, agonism of FXR significantly and dose-dependently inhibited proliferation, migration, and viability. In contrast, the synthetic agonism of another common bile acid receptor, the G protein-coupled bile acid receptor TGR5 (GPBAR1) which is mainly activated by secondary bile acids, failed to significantly alter cancer cell dynamics. In conclusion, agonism of FXR by primary bile acid memetic OCA yields potent anti-tumor effects potentially through inhibition of proliferation and migration and reduced cell viability. These findings suggest that FXR is a tumor suppressor gene with a high potential for use in personalized therapeutic strategies for individuals with BC.
RESUMO
Obesity and Western-like diet consumption leads to gut microbiome dysbiosis, which is associated with the development of cardio-metabolic diseases and poor health outcomes. The objective of this study was to reduce Western diet-mediated gut microbial dysbiosis, metabolic dysfunction, and systemic inflammation through the administration of a novel combined intervention strategy (oral probiotic bacteria supplements and muscadine grape extract (MGE)). To do so, adult female C57BL/6 mice were fed a low-fat control or Western-style diet and sub-grouped into diet alone, probiotic intervention, antibiotic treatments, MGE supplementation, a combination of MGE and probiotics, or MGE and antibiotics for 13 weeks. Mouse body weight, visceral adipose tissue (VAT), liver, and mammary glands (MG) were weighed at the end of the study. Fecal 16S rRNA sequencing was performed to determine gut bacterial microbiome populations. Collagen, macrophage, and monocyte chemoattractant protein-1 (MCP-1) in the VAT and MG tissue were examined by immunohistochemistry. Adipocyte diameter was measured in VAT. Immunohistochemistry of intestinal segments was used to examine villi length, muscularis thickness, and goblet cell numbers. We show that dietary interventions in Western diet-fed mice modulated % body weight gain, visceral adiposity, MG weight, gut microbial populations, and inflammation. Intervention strategies in both diets effectively reduced VAT and MG fibrosis, VAT and MG macrophages, adipocyte diameter, and VAT and MG MCP-1. Interventions also improved intestinal health parameters. In conclusion, dietary intervention with MGE and probiotics modulates several microbial, inflammatory, and metabolic factors reducing poor health outcomes associated with Western diet intake.
Assuntos
Microbioma Gastrointestinal , Probióticos , Vitis , Feminino , Animais , Camundongos , Disbiose/complicações , RNA Ribossômico 16S , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Probióticos/farmacologia , Inflamação/metabolismoRESUMO
Obesity is a chronic, relapsing, progressive disease of excess adiposity that increases the risk of developing at least 13 types of cancer. This report provides a concise review of the current state of the science regarding metabolic and bariatric surgery and obesity pharmacotherapy related to cancer risk. Meta-analyses of cohort studies report that metabolic and bariatric surgery is independently associated with a lower risk of incident cancer than nonsurgical obesity care. Less is known regarding the cancer-preventive effects of obesity pharmacotherapy. The recent approval and promising pipeline of obesity drugs will provide the opportunity to understand the potential for obesity therapy to emerge as an evidence-based cancer prevention strategy. There are myriad research opportunities to advance our understanding of how metabolic and bariatric surgery and obesity pharmacotherapy may be used for cancer prevention.
Assuntos
Cirurgia Bariátrica , Neoplasias , Humanos , Adiposidade , Cirurgia Bariátrica/efeitos adversos , Neoplasias/epidemiologia , Neoplasias/etiologia , Neoplasias/prevenção & controle , Obesidade/complicações , Obesidade/cirurgia , RiscoRESUMO
The presence of cell surface protein CD47 allows cancer cells to evade innate and adaptive immune surveillance resulting in metastatic spread. CD47 binds to and activates SIRPα on the surface of myeloid cells, inhibiting their phagocytic activity. On the other hand, CD47 binds the matricellular protein Thrombospondin-1, limiting T-cell activation. Thus, blocking CD47 is a potential therapeutic strategy for preventing brain metastasis. To test this hypothesis, breast cancer patient biopsies were stained with antibodies against CD47 to determine differences in protein expression. An anti-CD47 antibody was used in a syngeneic orthotopic triple-negative breast cancer model, and CD47 null mice were used in a breast cancer brain metastasis model by intracardiac injection of the E0771-Br-Luc cell line. Immunohistochemical staining of patient biopsies revealed an 89% increase in CD47 expression in metastatic brain tumors compared to normal adjacent tissue (p ≤ 0.05). Anti-CD47 treatment in mice bearing brain metastatic 4T1br3 orthotopic tumors reduced tumor volume and tumor weight by over 50% compared to control mice (p ≤ 0.05) and increased IBA1 macrophage/microglia marker 5-fold in tumors compared to control (p ≤ 0.05). Additionally, CD47 blockade increased the M1/M2 macrophage ratio in tumors 2.5-fold (p ≤ 0.05). CD47 null mice had an 89% decrease in metastatic brain burden (p ≤ 0.05) compared to control mice in a brain metastasis model. Additionally, RNA sequencing revealed several uniquely expressed genes and significantly enriched genes related to tissue development, cell death, and cell migration tumors treated with anti-CD47 antibodies. Thus, demonstrating that CD47 blockade affects cancer cell and tumor microenvironment signaling to limit metastatic spread and may be an effective therapeutic for triple-negative breast cancer brain metastasis.
RESUMO
Molecular links between breast cancer risk factors and pro-oncogenic tissue alterations are poorly understood. The goal of this study was to characterize the impact of overweight and obesity on tissue markers of risk, using normal breast biopsies, a mouse model of diet-induced obesity, and cultured breast acini. Proliferation and alteration of epithelial polarity, both necessary for tumor initiation, were quantified by immunostaining. High BMI (>30) and elevated leptin were associated with compromised epithelial polarity whereas overweight was associated with a modest increase in proliferation in human and mice mammary glands. Human serum with unfavorable adipokine levels altered epithelial polarization of cultured acini, recapitulating the effect of leptin. Weight loss in mice led to metabolic improvements and restored epithelial polarity. In acini cultures, alteration of epithelial polarity was prevented by antioxidants and could be reverted by normalizing culture conditions. This study shows that obesity and/or dietary factors modulate tissue markers of risk. It provides a framework to set target values for metabolic improvements and to assess the efficacy of interventional studies aimed at reducing breast cancer risk.
RESUMO
Most women diagnosed with breast cancer (BC) have estrogen receptor alpha-positive (ER+) disease. The current mouse models of ER+ BC often rely on exogenous estrogen to encourage metastasis, which modifies the immune system and the function of some tissues like bone. Other studies use genetically modified or immunocompromised mouse strains, which do not accurately replicate the clinical disease. To create a model of antiestrogen responsive BC with spontaneous metastasis, we developed a mouse model of 4T1.2 triple-negative (TN) breast cancer with virally transduced ER expression that metastasizes spontaneously without exogenous estrogen stimulation and is responsive to antiestrogen drugs. Our mouse model exhibited upregulated ER-responsive genes and multi-organ metastasis without exogenous estrogen administration. Additionally, we developed a second TN BC cell line, E0771/bone, to express ER, and while it expressed ER-responsive genes, it lacked spontaneous metastasis to clinically important tissues. Following antiestrogen treatment (tamoxifen, ICI 182,780, or vehicle control), 4T1.2- and E0771/bone-derived tumor volumes and weights were significantly decreased, exemplifying antiestrogen responsivity in both cell lines. This 4T1.2 tumor model, which expresses the estrogen receptor, metastasizes spontaneously, and responds to antiestrogen treatment, will allow for further investigation into the biology and potential treatment of metastasis.
RESUMO
Despite advances in treatment strategies, breast cancer (BC) remains one of the most prevalent cancers worldwide. Recent studies implicate the gut microbiome as a potential risk factor for BC development. Alterations in gut microbial diversity resulting in dysbiosis have been linked to breast carcinogenesis by modulating host immune responses and inflammatory pathways, favoring tumorigenesis and progression. Moreover, gut microbiota populations are different between women with BC vs those that are cancer free, further implicating the role of the gut microbiome in cancer development. This alteration in gut microbiota is also associated with changes in estrogen metabolism, which strongly correlates with BC development. Gut microbiota that express the enzyme ß-glucuronidase (GUS) may increase estrogen bioavailability by deconjugating estrogen-glucuronide moieties enabling reabsorption into circulation. Increased circulating estrogens may, in turn, drive estrogen receptor-positive BC. GUS-expressing microbiota also affect cancer therapy efficacy and toxicity by modifying glucuronide-conjugated drug metabolites. Therefore, GUS inhibitors have emerged as a potential antitumor treatment. However, the effectiveness of GUS inhibitors is still exploratory. Further studies are needed to determine how oral endocrine-targeting therapies may influence or be influenced by the microbiota and how that may affect carcinogenesis initiation and tumor recurrence.
Assuntos
Neoplasias da Mama , Microbiota , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/etiologia , Glucuronídeos , Recidiva Local de Neoplasia , Disbiose/complicações , Microbiota/fisiologia , Estrogênios/metabolismo , Carcinogênese , Glucuronidase/metabolismo , Transformação Celular Neoplásica , Inibidores EnzimáticosRESUMO
Expression of immune checkpoint proteins restrict immunosurveillance in the tumor microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will focus on the metabolic alterations in immune and cancer cells regulated by currently approved immune checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism. Additionally, we explore how diet and the microbiome impact immune checkpoint blockade therapy response. The metabolic reprogramming caused by targeting these proteins is essential in understanding immune-related adverse events and therapeutic resistance. This can provide valuable information for potential biomarkers or combination therapy strategies targeting metabolic pathways with immune checkpoint blockade to enhance patient response.
Assuntos
Proteínas de Checkpoint Imunológico/metabolismo , Neoplasias/metabolismo , Dieta , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Microbiota/efeitos dos fármacosRESUMO
Thrombospondin-1 (TSP1) is a matricellular protein with many important roles in mediating carcinogenesis, fibrosis, leukocyte recruitment, and metabolism. We have previously shown a role of diet in the absence of TSP1 in liver metabolism in the context of a colorectal cancer model. However, the metabolic implications of TSP1 regulation by diet in the liver metabolism are currently understudied. Therefore Discrete correlation summation (DCS) was used to re-interrogate data and determine the metabolic alterations of TSP1 deficiency in the liver, providing new insights into the role of TSP1 in liver injury and the progression of liver pathologies such as nonalcoholic fatty liver disease (NAFLD). DCS analysis provides a straightforward approach to rank covariance and data clustering when analyzing complex data sets. Using this approach, our previous liver metabolite data was re-analyzed by comparing wild-type (WT) and Thrombospondin-1 null (Thbs1-/-) mice, identifying changes driven by genotype and diet. Principal component analysis showed clustering of animals by genotype regardless of diet, indicating that TSP1 deficiency alters metabolite handling in the liver. High-fat diet consumption significantly altered over 150 metabolites in the Thbs1-/- livers versus approximately 90 in the wild-type livers, most involved in amino acid metabolism. The absence of Thbs1 differentially regulated tryptophan and tricarboxylic acid cycle metabolites implicated in the progression of NAFLD. Overall, the lack of Thbs1 caused a significant shift in liver metabolism with potential implications for liver injury and the progression of NAFLD.