Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33278358

RESUMO

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Assuntos
Anti-Inflamatórios/administração & dosagem , Azetidinas/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Macaca mulatta , Infiltração de Neutrófilos/efeitos dos fármacos , Purinas/administração & dosagem , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , COVID-19/fisiopatologia , Morte Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Janus Quinases/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos Alveolares/imunologia , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Linfócitos T/imunologia , Replicação Viral/efeitos dos fármacos
2.
J Mol Cell Cardiol ; 176: 98-109, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764383

RESUMO

RATIONALE: The innate immune response contributes to cardiac injury in myocardial ischemia/reperfusion (MI/R). Neutrophils are an important early part of the innate immune response to MI/R. Adenosine, an endogenous purine, is a known innate immune modulator and inhibitor of neutrophil activation. However, its delivery to the heart is limited by its short half-life (<30 s) and off-target side effects. CD39 and CD73 are anti-inflammatory homeostatic enzymes that can generate adenosine from phosphorylated adenosine substrate such as ATP released from injured tissue. OBJECTIVE: We hypothesize that hydrogel-delivered CD39 and CD73 target the local early innate immune response, reduce neutrophil activation, and preserve cardiac function in MI/R injury. METHODS AND RESULTS: We engineered a poly(ethylene) glycol (PEG) hydrogel loaded with the adenosine-generating enzymes CD39 and CD73. We incubated the hydrogels with neutrophils in vitro and showed a reduction in hydrogen peroxide production using Amplex Red. We demonstrated availability of substrate for the enzymes in the myocardium in MI/R by LC/MS, and tested release kinetics from the hydrogel. On echocardiography, global longitudinal strain (GLS) was preserved in MI/R hearts treated with the loaded hydrogel. Delivery of purinergic enzymes via this synthetic hydrogel resulted in lower innate immune infiltration into the myocardium post-MI/R, decreased markers of macrophage and neutrophil activation (NETosis), and decreased leukocyte-platelet complexes in circulation. CONCLUSIONS: In a rat model of MI/R injury, CD39 and CD73 delivered via a hydrogel preserve cardiac function by modulating the innate immune response.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Hidrogéis/uso terapêutico , Coração , Miocárdio , Adenosina , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Polietilenoglicóis/uso terapêutico
4.
J Biol Chem ; 292(43): 17731-17745, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28878020

RESUMO

Melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor expressed in the brain's hypothalamus where it regulates energy homeostasis. MC4R agonists function to lower food intake and weight. In this respect, although obesity promotes hyperlipidemia and hypothalamic injury, MC4R agonists are nevertheless more effective to reduce food intake within hours of administration in overweight, rather than lean, mice. MC4R undergoes constitutive internalization and recycling to the plasma membrane with agonist binding inducing receptor retention along the intracellular route and, under prolonged exposure, desensitization. Here, we found that, in neuronal cells, lipid stress by exposure to elevated palmitate leaves unchanged the rate by which MC4R and transferrin receptor are constitutively excluded from the cell surface. However, lipid stress disrupted later steps of MC4R and transferrin receptor internalization to endosomes as well as traffic of agonist-occupied MC4R to lysosomes and MC4R desensitization. In the lipid-stressed cells, MC4R and clathrin were redistributed to the plasma membrane where they colocalized to sites that appeared by super-resolution microscopy to be modified and to have higher clathrin content than those of cells not exposed to elevated palmitate. The data suggest that lipid stress disrupts steps of endocytosis following MC4R localization to clathrin-coated sites and exclusion of the receptor from the extracellular medium. We conclude that increased effectiveness of MC4R agonists in obesity may be an unexpected outcome of neuronal injury with disrupted clathrin-dependent endocytosis and impaired receptor desensitization.


Assuntos
Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Hiperlipidemias/metabolismo , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Clatrina/genética , Hiperlipidemias/genética , Lisossomos/genética , Lisossomos/metabolismo , Masculino , Camundongos , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
5.
iScience ; 23(5): 101114, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32438321

RESUMO

In the melanocortin pathway, melanocortin-4 receptor (MC4R) functions to control energy homeostasis. MC4R is expressed in a sub-population of Sim1 neurons (Sim1/MC4R neurons) and functions in hypothalamic paraventricular nuclei (PVN) to control food intake. Mapping sites of hypothalamic injury in obesity is essential to counteract the disease. In the PVN of male and female mice with diet-induced obesity (DIO) there is neuronal loss. However, the existing subpopulation of PVN Sim1/MC4R neurons is unchanged, but has a loss of mitochondria and MC4R protein. In mice of both sexes with DIO, dietary intervention to re-establish normal weight restores abundance of MC4R protein in Sim1/MC4R neurons and neurogenesis in the PVN. However, the number of non-Sim1/MC4R neurons in the PVN continues to remain decreased. Selective survival and recovery of Sim1/MC4R neurons after DIO suggests these neurons as preferential target to restore energy homeostasis and of therapy against obesity.

6.
Cell Death Discov ; 6: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32123584

RESUMO

Genetic obesity increases in liver phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio, inducing endoplasmic reticulum (ER) stress without concomitant increase of ER chaperones. Here, it is found that exposing mice to a palm oil-based high fat (HF) diet induced obesity, loss of liver PE, and loss of the ER chaperone Grp78/BiP in pericentral hepatocytes. In Hepa1-6 cells treated with elevated concentration of palmitate to model lipid stress, Grp78/BiP mRNA was increased, indicating onset of stress-induced Unfolded Protein Response (UPR), but Grp78/BiP protein abundance was nevertheless decreased. Exposure to elevated palmitate also induced in hepatoma cells decreased membrane glycosylation, nuclear translocation of pro-apoptotic C/EBP-homologous-protein-10 (CHOP), expansion of ER-derived quality control compartment (ERQC), loss of mitochondrial membrane potential (MMP), and decreased oxidative phosphorylation. When PE was delivered to Hepa1-6 cells exposed to elevated palmitate, effects by elevated palmitate to decrease Grp78/BiP protein abundance and suppress membrane glycosylation were blunted. Delivery of PE to Hepa1-6 cells treated with elevated palmitate also blunted expansion of ERQC, decreased nuclear translocation of CHOP and lowered abundance of reactive oxygen species (ROS). Instead, delivery of the chemical chaperone 4-phenyl-butyrate (PBA) to Hepa1-6 cells treated with elevated palmitate, while increasing abundance of Grp78/BiP protein and restoring membrane glycosylation, also increased ERQC, expression and nuclear translocation of CHOP, non-mitochondrial oxygen consumption, and generation of ROS. Data indicate that delivery of PE to hepatoma cells under lipid stress recovers cell function by targeting the secretory pathway and by blunting pro-apoptotic branches of the UPR.

7.
bioRxiv ; 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32995780

RESUMO

Effective therapeutics aimed at mitigating COVID-19 symptoms are urgently needed. SARS-CoV-2 induced hypercytokinemia and systemic inflammation are associated with disease severity. Baricitinib, a clinically approved JAK1/2 inhibitor with potent anti-inflammatory properties is currently being investigated in COVID-19 human clinical trials. Recent reports suggest that baricitinib may also have antiviral activity in limiting viral endocytosis. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages and tissues was not reduced with baricitinib. Type I IFN antiviral responses and SARS-CoV-2 specific T cell responses remained similar between the two groups. Importantly, however, animals treated with baricitinib showed reduced immune activation, decreased infiltration of neutrophils into the lung, reduced NETosis activity, and more limited lung pathology. Moreover, baricitinib treated animals had a rapid and remarkably potent suppression of alveolar macrophage derived production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for severe inflammation induced by SARS-CoV-2 infection.

8.
J Leukoc Biol ; 105(6): 1225-1234, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30907983

RESUMO

Neutrophil extracellular traps (NETs) are implicated in autoimmune, thrombotic, malignant, and inflammatory diseases; however, little is known of their endogenous regulation under basal conditions. Inflammatory effects of neutrophils are modulated by extracellular purines such as adenosine (ADO) that is inhibitory or ATP that generally up-regulates effector functions. In order to evaluate the effects of ADO on NETs, human neutrophils were isolated from peripheral venous blood from healthy donors and stimulated to make NETs. Treatment with ADO inhibited NET production as quantified by 2 methods: SYTOX green fluorescence and human neutrophil elastase (HNE)-DNA ELISA assay. Specific ADO receptor agonist and antagonist were tested for their effects on NET production. The ADO 2A receptor (A2A R) agonist CSG21680 inhibited NETs to a similar degree as ADO, whereas the A2A R antagonist ZM241385 prevented ADO's NET-inhibitory effects. Additionally, CD73 is a membrane bound ectonucleotidase expressed on mesenchymal stromal cells (MSCs) that allows manipulation of extracellular purines in tissues such as bone marrow. The effects of MSCs on NET formation were evaluated in coculture. MSCs reduced NET formation in a CD73-dependent manner. These results imply that extracellular purine balance may locally regulate NETosis and may be actively modulated by stromal cells to maintain tissue homeostasis.


Assuntos
Adenosina/imunologia , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , 5'-Nucleotidase/imunologia , Técnicas de Cocultura , Proteínas Ligadas por GPI/imunologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Neutrófilos/citologia , Receptor A2A de Adenosina/imunologia
9.
Mol Endocrinol ; 29(11): 1619-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26418335

RESUMO

The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in the brain, where it controls energy balance through pathways including α-melanocyte-stimulating hormone (α-MSH)-dependent signaling. We have reported that the MC4R can exist in an active conformation that signals constitutively by increasing cAMP levels in the absence of receptor desensitization. We asked whether synthetic MC4R agonists differ in their ability to increase intracellular cAMP over time in Neuro2A cells expressing endogenous MC4R and exogenous, epitope-tagged hemagglutinin-MC4R-green fluorescent protein. By analyzing intracellular cAMP in a temporally resolved Förster resonance energy transfer assay, we show that withdrawal of α-MSH leads to a quick reversal of cAMP induction. By contrast, the synthetic agonist melanotan II (MTII) induces a cAMP signal that persists for at least 1 hour after removal of MTII from the medium and cannot be antagonized by agouti related protein. Similarly, in mHypoE-42 immortalized hypothalamic neurons, MTII, but not α-MSH, induced persistent AMP kinase signal, which occurs downstream of increased cAMP. By using a fluorescence recovery after photobleaching assay, it appears that the receptor exposed to MTII continues to signal after being internalized. Similar to MTII, the synthetic MC4R agonists, THIQ and BIM-22511, but not LY2112688, induced prolonged cAMP signaling after agonist withdrawal. However, agonist-exposed MC4R desensitized to the same extent, regardless of the ligand used and regardless of differences in receptor intracellular retention kinetics. In conclusion, α-MSH and LY2112688, when compared with MTII, THIQ, and BIM-22511, vary in the duration of the acute cAMP response, showing distinct temporal signaling selectivity, possibly linked to specific cell compartments from which cAMP signals may originate.


Assuntos
Proteína Relacionada com Agouti/farmacologia , AMP Cíclico/metabolismo , Peptídeos Cíclicos/farmacologia , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , alfa-MSH/análogos & derivados , alfa-MSH/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adenilato Quinase/metabolismo , Animais , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Camundongos , Peptídeos/farmacologia , Fotodegradação , Conformação Proteica , Receptor Tipo 4 de Melanocortina/genética , Tetra-Hidroisoquinolinas/farmacologia , Triazóis/farmacologia , alfa-MSH/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA