Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 19(46): 9027-9035, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37971365

RESUMO

Collagen/hyaluronan hydrogels with physical properties well suited for biomedical applications are challenging to synthesize due to the formation of polyionic complexes (PICs). A systematic physicochemical study was thus performed to determine novel conditions to inhibit the formation of collagen/hyaluronan PICs and obtain composite hydrogels with high physical properties. Using a range of pH from 1 to 5.5 and the addition of NaCl, type I collagen and tyramine-substituted hyaluronic acid (THA) solutions were mixed and analyzed by cryo-scanning electron microscopy and ATR-FTIR. PIC formation was inhibited at pH 1 without salt and at pH 2.5 and 5.5 in the presence of 400 mM NaCl. Interestingly, collagen fibrils were observed in solution at pH 5.5 before mixing with THA. After collagen gelling by pH increase, a homogeneous hydrogel consisting of collagen fibrils was only observed when PICs were inhibited. Then, the THA gelling performed by photo-crosslinking increased the rheological properties by four when hydrogels were formed with collagen/THA mixtures at pH 1 or 5.5 with salt. Taken together, these results show that a pH of 5.5, close to the collagen isoelectric point, enables the formation of collagen fibrils in solution, inhibits the PICs formation, and allows the formation of homogenous collagen/THA composite hydrogels compatible with cell survival.


Assuntos
Ácido Hialurônico , Hidrogéis , Ácido Hialurônico/química , Ponto Isoelétrico , Hidrogéis/química , Cloreto de Sódio , Colágeno/química
2.
Molecules ; 27(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408498

RESUMO

Fibrin-Type I collagen composite gels have been widely studied as biomaterials, in which both networks are usually formed simultaneously at a neutral pH. Here, we describe a new protocol in which mixed concentrated solutions of collagen and fibrinogen were first incubated at acidic pH to induce fibrinogen gel formation, followed by a pH change to neutral inducing collagen fiber formation. Thrombin was then added to form fibrin-collagen networks. Using this protocol, mixed gels containing 20 mg.mL-1 fibrin and up to 10 mg.mL-1 collagen could be prepared. Macroscopic observations evidenced that increasing the content of collagen increases the turbidity of the gels and decreases their shrinkage during the fibrinogen-to-fibrin conversion. The presence of collagen had a minor influence on the rheological properties of the gels. Electron microscopy allowed for observation of collagen fibers within the fibrin network. 2D cultures of C2C12 myoblasts on mixed gels revealed that the presence of collagen favors proliferation and local alignment of the cells. However, it interferes with cell differentiation and myotube formation, suggesting that further control of in-gel collagen self-assembly is required to elaborate fully functional biomaterials.


Assuntos
Colágeno Tipo I , Fibrina , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Colágeno/química , Fibrina/química , Fibrinogênio/química , Géis/química
3.
Biomacromolecules ; 22(6): 2740-2753, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34027656

RESUMO

Cellulose nanocrystals (CNCs) have been widely studied as fillers to form reinforced nanocomposites with a wide range of applications, including the biomedical field. Here, we evaluated the possibility to combine them with fibrinogen and obtain fibrin hydrogels with improved mechanical stability as potential cellular scaffolds. In diluted conditions at a neutral pH, it was evidenced that fibrinogen could adsorb on CNCs in a two-step process, favoring their alignment under flow. Composite hydrogels could be prepared from concentrated fibrinogen solutions and nanocrystals in amounts up to 0.3 wt %. CNCs induced a significant modification of the initial fibrin fibrillogenesis and final fibrin network structure, and storage moduli of all nanocomposites were larger than those of pure fibrin hydrogels. Moreover, optimal conditions were found that promoted muscle cell differentiation and formation of long myotubes. These results provide original insights into the interactions of CNCs with proteins with key physiological functions and offer new perspectives for the design of injectable fibrin-based formulations.


Assuntos
Celulose , Nanopartículas , Fibrina , Fibras Musculares Esqueléticas , Nanogéis
4.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668750

RESUMO

Chlorogenic (CA) and rosmarinic (RA) acids are two natural bioactive hydroxycinnamic acids whose antioxidant properties can be modulated by the chelation of metal ions. In this work, the interactions of these two carboxylic phenols with calcium ions and the impact of such interactions on their antioxidant activity were investigated. UV-Vis absorbance, mass spectroscopy and 1H and 13C liquid NMR were used to identify complexes formed by CA and RA with calcium. Antioxidant activities were measured by the Bois method. Density functional theory (DFT) calculations were performed to evaluate the most stable configurations and correlated with NMR data. Taken together, these data suggest that calcium ions mainly interact with the carboxylate groups of both molecules but that this interaction modifies the reactivity of the catechol groups, especially for RA. These results highlight the complex interplay between metal chelation and antioxidant properties of natural carboxylic phenols.


Assuntos
Antioxidantes/química , Cálcio/química , Quelantes/química , Ácido Clorogênico/química , Cinamatos/química , Depsídeos/química , Compostos de Bifenilo/efeitos da radiação , Teoria da Densidade Funcional , Interações Medicamentosas , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Fotodegradação , Picratos/efeitos da radiação , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Ácido Rosmarínico
5.
Biomacromolecules ; 20(10): 3684-3695, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31381302

RESUMO

Silanization of biomacromolecules has emerged as a fruitful approach to prepare hybrid biohydrogels. However, very little is known about interactions between organosilanes and biopolymers in solution. Here we focused on fibrin, a protein of interest in the biomedical field, whose self-assembly process and resulting gel structure are highly sensitive to experimental conditions. Three main silanes were selected to decipher the relative influence of the silanol groups and organic functions. Whereas no protein denaturation was observed, silanes bearing hydrophobic groups had a surfactant-like behavior and could improve the dispersion of fibrinogen molecules, impacting gel formation kinetics and rheological properties. 3D cultures of myoblasts evidenced that organosilanes could promote or impede cell proliferation, suggesting interactions of silanols with fibrin. These results demonstrate that the two sides of the coin of organosilane reactivity are relevant at different stages of fibrin gel formation and must be considered for future development of hybrid biomaterials.


Assuntos
Fibrina/química , Fibrinogênio/química , Hidrogéis/química , Mioblastos/efeitos dos fármacos , Compostos de Organossilício/química , Animais , Linhagem Celular , Proliferação de Células , Hidrogéis/efeitos adversos , Camundongos , Mioblastos/fisiologia , Desnaturação Proteica
6.
Langmuir ; 34(1): 406-415, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29224358

RESUMO

Silica nanoparticles appear as promising drug carriers for intracellular delivery. However, the mechanisms by which they are degraded within cells remain largely unknown. In this context, we have prepared three types of PEGylated fluorescent silica nanoparticles with various internal structures (core-shell biocomposite, multilayered, and hollow mesoporous) and studied their degradation in a buffer, in a culture medium, and in contact with human dermal fibroblasts. All particles were prone to dissolve in solution, leading to an increase of porosity and/or the precipitation of new colloids and eventually fragmentation, with a faster rate in the medium compared to that in the buffer. All particles were also uptaken by the cells without significant cytotoxic effect. Their intracellular degradation occurred faster than in suspension, but following almost similar dissolution mechanisms. These results strongly suggest that in these conditions, silica nanoparticles must be primarily considered as hydrolytically degraded and not biodegraded, a point of importance for their future applications in drug delivery.

7.
Langmuir ; 34(44): 13225-13234, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30296100

RESUMO

Hybrid imogolite aluminosilicate nanotubes with methylated internal surface can be obtained by introduction of the corresponding organosilane during their synthesis. However, similarly to pristine imogolite, a number of side products, including proto-imogolite (open-imoLS), allophanes, and aluminum hydroxides, are formed, which ultimately impact on the properties of the dispersions. In order to minimize the proportion of these side products, we have here systematically explored the impact of the initial Si/Al ratio on the content of hybrid imogolite dispersions before and after dialysis. By combining cryo-transmission electron microscopy, inductively coupled plasma mass spectrometry, infrared spectroscopy, and small-angle X-ray scattering, we evidenced that the Si/Al ratio has a large impact on the formation of aluminum hydroxides that can be minimized with a slight excess of Si precursor. However, a large excess of Si is detrimental to the reaction yield leading to an important proportion of proto-imogolite. We propose that the optimal Si/Al ratio of ca. 0.6 can both minimize the proportion of aluminum hydroxides and proto-imogolite. These results suggest that the dynamic and therefore reactive character of imogolite dispersions may have been so far underlooked.

8.
Anal Bioanal Chem ; 410(4): 1205-1216, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28573323

RESUMO

Optical biosensors for the detection of toxic species in aqueous media were developed via the encapsulation of microalgae in sol-gel matrices. In a first step, the effect of cadmium(II), lead(II), and anthracene on the chlorophyll a fluorescence intensity of Anabaena flos-aquae, Chlorella vulgaris, and Euglena gracilis microalgae in suspension was studied. Complementary ATP-metry measurements demonstrated a direct relationship between optical response and pollutant toxicity, in a cell- and dose-dependent manner. In a second step, microalgae were successfully encapsulated in silicate-colloidal silica nanocomposite matrices. However, a complete loss of cell response to pollutant addition was observed, despite the preservation of cell viability. Introduction of a low amount (5 mol%) of amine- or ethyl-bearing silanes in the matrix formulation allowed the recovery of the sensing capacity of the immobilized microalgae, without impacting on the response time (30 s). Porosimetry and 29Si solid-state NMR spectroscopy showed that the organic moieties are fully integrated into the inorganic network, tuning the ability of the target pollutant to diffuse and reach the encapsulated algae. This versatile strategy could be useful for the easy and fast assessment of contamination levels in polluted waters. Graphical Abstract Microalgal biosensors for aqueous contaminants using organically doped silica as cellular hosts.


Assuntos
Técnicas Biossensoriais , Microalgas/metabolismo , Dióxido de Silício/metabolismo , Poluentes da Água/metabolismo
9.
Langmuir ; 32(39): 10073-10082, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27609666

RESUMO

Silica-coated gold-silver alloy nanoshells were obtained via a bioinspired approach using gelatin and poly-l-lysine (PLL) as biotemplates for the interfacial condensation of sodium silicate solutions. X-ray photoelectron spectroscopy was used as an efficient tool for the in-depth and complete characterization of the chemical features of nanoparticles during the whole synthetic process. Cytotoxicity assays using HaCaT cells evidenced the detrimental effect of the gelatin nanocoating and significant induction of late apoptosis after silicification. In contrast, PLL-modified nanoparticles had less biological impact that was further improved by the silica layer, and uptake rates of up to 50% of those of the initial particles could be achieved. These results are discussed considering the effect of nanosurface confinement of the biopolymers on their chemical and biological reactivity.

10.
Langmuir ; 31(40): 11078-85, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26387475

RESUMO

The conjugation of polyethylenimine (PEI) to silica nanoparticles has emerged as a useful strategy in gene delivery. Here we investigate the influence of the PEI conjugation mode on the transfection ability of plain silica nanoparticles. Surface functionalization with sulfonate- and chloride-bearing silanes modulates the amount and conformation of PEI and therefore the particles' affinity for the plasmid, without impacting on cytotoxicity. However, transfection efficiency in both immortalized and primary cells is more directly correlated to the nature and strength of the particle-PEI interactions. It suggests that PEI detachment from the particle surface at the stage of endosomal escape is a key event in the plasmid delivery process. These data should provide fruitful guidelines for the fine tuning of colloidal surfaces intended for intracellular delivery of bioactive molecules.


Assuntos
Vetores Genéticos , Polietilenoimina/química , Dióxido de Silício/química , Transfecção , Células 3T3 , Animais , Células Cultivadas , Eletroforese em Gel de Ágar , Humanos , Camundongos , Microscopia de Fluorescência
11.
Soft Matter ; 10(35): 6651-7, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25058449

RESUMO

The assembly of proteins into fibrillar structures is an important process that concerns different biological contexts, including molecular medicine and functional biomaterials. Engineering of hybrid biomaterials can advantageously provide synergetic interactions of the biopolymers with an inorganic component to ensure specific supramolecular organization and dynamics. To this aim, we designed hybrid systems associating collagen and surface-functionalized silica particles and we built a new strategy to investigate fibrillogenesis processes in such multicomponents systems, working at the crossroads of chemistry, physics and mathematics. The self-assembly process was investigated by bimodal multiphoton imaging coupling second harmonic generation (SHG) and 2 photon excited fluorescence (2PEF). The in-depth spatial characterization of the system was further achieved using the three-dimensional analysis of the SHG/2PEF data via mathematical morphology processing. Quantitation of collagen distribution around particles offers strong evidence that the chemically induced confinement of the protein on the silica nanosurfaces has a key influence on the spatial extension of fibrillogenesis. This new approach is unique in the information it can provide on 3D dynamic hybrid systems and may be extended to other associations of fibrillar molecules with optically responsive nano-objects.


Assuntos
Colágeno/química , Nanopartículas/química , Adsorção , Animais , Fibrina/química , Concentração de Íons de Hidrogênio , Imageamento Tridimensional , Teste de Materiais , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Nanoestruturas/química , Nanotecnologia/métodos , Fótons , Polímeros/química , Conformação Proteica , Ratos , Dióxido de Silício/química , Água/química
12.
Gels ; 10(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391460

RESUMO

Since their first description nearly 20 years ago, dense collagen hydrogels obtained by plastic compression have become popular scaffolds in tissue engineering. In particular, when seeded with dental pulp stem cells, they have demonstrated a great in vivo potential in cranial bone repair. Here, we investigated how physico-chemical and cell-seeding conditions could influence the formation and in vitro mineralization of these cellularized scaffolds. A qualitative assessment demonstrated that the gel stability before and after compression was highly sensitive to the conditions of fibrillogenesis, especially initial acid acetic and buffer concentrations. Gels with similar rheological properties but different fibrillar structures that exhibited different stabilities when used for the 3D culture of Stem cells from Human Exfoliated Deciduous teeth (SHEDs) could be prepared. Finally, in our optimal physico-chemical conditions, mineralization could be achieved only using human dental pulp stem cells (hDPSCs) at a high cell density. These results highlight the key role of fibrillogenic conditions and cell type/density on the bone repair potential of cell-laden plastically compressed collagen hydrogels.

13.
ACS Biomater Sci Eng ; 10(10): 6451-6464, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39269225

RESUMO

The management of extensive bone loss remains a clinical challenge. Numerous studies are underway to develop a combination of biomaterials, biomolecules, and stem cells to address this challenge. In particular, the systemic administration of antibodies against sclerostin, a regulator of bone formation, was recently shown to enhance the bone repair efficiency of dense collagen hydrogels (DCHs) hosting murine dental pulp stem cells (mDPSCs). The aim of the present study was to assess whether these antibodies, encapsulated and released from DCHs, could promote craniofacial bone repair by the local inhibition of sclerostin. In vitro studies showed that antibody loading modified neither the hydrogel structure nor the viability of seeded mDPSCs. When implanted in a mouse calvaria critical-size bone defect, antibody-loaded DCHs showed repair capabilities similar to those of acellular unloaded DCHs combined with antibody injections. Importantly, the addition of mDPSCs provided no further benefit. Altogether, the local delivery of antisclerostin antibodies from acellular dense collagen scaffolds is highly effective for bone repair. The drastic reduction in the required amount of antibody compared to systemic injection should reduce the cost of the procedure, making the strategy proposed here a promising therapeutic approach for large bone defect repair.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Anticorpos , Colágeno , Hidrogéis , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Colágeno/química , Anticorpos/farmacologia , Anticorpos/imunologia , Anticorpos/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Crânio/efeitos dos fármacos , Crânio/patologia , Regeneração Óssea/efeitos dos fármacos , Células-Tronco , Alicerces Teciduais/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia
14.
Dent Mater ; 40(9): 1390-1399, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908960

RESUMO

OBJECTIVES: Silicon-releasing biomaterials are widely used in the field of dentistry. However, unlike bone, very little is known about the role of silicon on dental tissue formation and repair. This study investigates the influence of silicic acid on the survival, differentiation and mineralizing ability of human dental pulp stem cells (hDPSCs) in 3D pulp-like environments METHODS: Dense type I collagen hydrogels seeded with hDPSCs were cultured over 4 weeks in the presence of silicic acid at physiological (10 µM) and supraphysiological (100 µM) concentrations. Cell viability and proliferation were studied by Alamar Blue and live/dead staining. The collagen network was investigated using second harmonic generation imaging. Mineral deposition was monitored by histology and scanning electron microscopy. Gene expression of mineralization- and matrix remodeling-associated proteins was studied by qPCR. RESULTS: Presence of silicic acid did not show any significant influence on cell survival, metabolic activity and gene expression of key mineralization-related proteins (ALP, OCN, BSP). However, it induced enhanced cell clustering and delayed expression of matrix remodeling-associated proteins (MMP13, Col I). OPN expression and mineral deposition were inhibited at 100 µM. It could be inferred that silicic acid has no direct cellular effect but rather interacts with the collagen network, leading to a modification of the cell-matrix interface. SIGNIFICANCE: Our results offer advanced insights on the possible role of silicic acid, as released by pulp capping calcium silicates biomaterials, in reparative dentine formation. More globally, these results interrogate the possible role of Si in pulp pathophysiology.


Assuntos
Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Polpa Dentária , Ácido Silícico , Células-Tronco , Humanos , Polpa Dentária/citologia , Células-Tronco/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Silícico/farmacologia , Ácido Silícico/química , Células Cultivadas , Hidrogéis/química , Microscopia Eletrônica de Varredura , Silício/química , Colágeno , Calcificação Fisiológica/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Colágeno Tipo I/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
15.
Gels ; 9(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37504397

RESUMO

Type I collagen and chitosan are two of the main biological macromolecules used to design scaffolds for tissue engineering. The former has the benefits of being biocompatible and provides biochemical cues for cell adhesion, proliferation and differentiation. However, collagen hydrogels usually exhibit poor mechanical properties and are difficult to functionalize. Chitosan is also often biocompatible, but is much more versatile in terms of structure and chemistry. Although it does have important biological properties, it is not a good substrate for mammalian cells. Combining of these two biomacromolecules is therefore a strategy of choice for the preparation of interesting biomaterials. The aim of this review is to describe the different protocols available to prepare Type I collagen-chitosan hydrogels for the purpose of presenting their physical and chemical properties and highlighting the benefits of mixed hydrogels over single-macromolecule ones. A critical discussion of the literature is provided to point out the poor understanding of chitosan-type I collagen interactions, in particular due to the lack of systematic studies addressing the effect of chitosan characteristics.

16.
Acta Biomater ; 169: 155-167, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37574156

RESUMO

Developmental Defects of Enamel (DDE) such as Dental Fluorosis (DF) and Molar Incisor Hypomineralization (MIH) are a major public health problem. Their clinical aspects are extremely variable, challenging their early and specific diagnosis and hindering progresses in restorative treatments. Here, a combination of macro-, micro- and nano-scale structural and chemical methods, including, among others, Atom Probe Tomography recently applied on tooth enamel, were used to study and compare MIH, DF and healthy teeth from 89 patients. Globally, we show that DF is characterized by an homogenous loss of mineral content and crystallinity mainly disrupting outside layer of enamel, whereas MIH is associated with localized defects in the depth of enamel where crystalline mineral particles are embedded in an organic phase. Only minor differences in elemental composition of the mineral phase could be detected at the nanoscale such as increased F and Fe content in both severe DDE. We demonstrate that an improved digital color measurement of clinical relevance can discriminate between DF and MIH lesions, both in mild and severe forms. Such discriminating ability was discussed in the light of enamel composition and structure, especially its microstructure, organics presence and metal content (Fe, Zn). Our results offer additional insights on DDE characterization and pathogenesis, highlight the potentiality of colorimetric measurements in their clinical diagnosis and provide leads to improve the performance of minimally invasive restorative strategies. STATEMENT OF SIGNIFICANCE: Developmental Defects of Enamel (DDE) are associated to caries and tooth loose affecting billions of people worldwide. Their precise characterization for adapted minimally invasive care with optimized materials is highly expected. Here In this study, first we propose the use of color parameters measured by a spectrophotometer as a means of differential clinical diagnosis. Second, we have used state-of-the-art techniques to systematically characterize the structure, chemical composition and mechanical optical properties of dental enamel teeth affected by two major DDE, Dental Fluorosis (DF) or Molar Incisor Hypomineralization (MIH). We evidence specific enamel structural and optical features for DF and MIH while chemical modifications of the mineral nanocrystals were mostly correlated with lesion severity. Our results pave the way of the concept of personalized dentistry. In the light of our results, we propose a new means of clinical diagnosis for an adapted and improved restoration protocol for these patients.


Assuntos
Defeitos de Desenvolvimento do Esmalte Dentário , Fluorose Dentária , Humanos , Relevância Clínica , Fluorose Dentária/diagnóstico , Fluorose Dentária/terapia , Fluorose Dentária/patologia , Incisivo , Minerais , Prevalência
17.
Biotechnol Bioeng ; 109(1): 284-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21809325

RESUMO

Targeting the development of cell-based bioreactors for the production of metal nanoparticles, the possibility to perform the sustained synthesis of colloidal gold using Klebsormidium flaccidum green algae was studied. A first strategy relying on successive growth/reduction/reseeding recycling steps demonstrated maintained biosynthesis capability of the microalgae but limitation in metal content due to toxic effects. An alternative approach consisting of progressive gold salt addition revealed to be suitable to favor cell adaptation to larger metal concentrations and supported particle release over month periods.


Assuntos
Biotecnologia/métodos , Ouro/metabolismo , Nanopartículas Metálicas , Microalgas/metabolismo , Fotossíntese , Estreptófitas/metabolismo , Reatores Biológicos , Microalgas/fisiologia , Estreptófitas/fisiologia
18.
Langmuir ; 28(4): 2156-65, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22084966

RESUMO

DNA is used to rationally build up networks of silica nanoparticles (SiNPs) based on the molecular recognition properties of complementary sequences. Network self-assembly is controlled from DNA covalently grafted at the surface of chemically modified SiNPs. Two strategies are compared, where grafted DNA sequences are designed in a three-strand system using noncomplementary sequences and an extra DNA linker, or in a two-strand approach for direct hybridization. In this paper, both systems are compared in terms of DNA hybridization stability, network size, and three-dimensional organization using a combination of dynamic light scattering and electron microscopy. The observed differences are discussed in terms of hybridization interactions between DNA sequences in particle-free systems through fluorescence, circular dichroism, and UV spectroscopy techniques.


Assuntos
DNA/química , Modelos Moleculares , Nanopartículas/química , Tamanho da Partícula , Dióxido de Silício/química , Sequência de Bases , DNA/genética , Eletroforese , Microscopia Eletrônica , Hibridização de Ácido Nucleico , Análise Espectral
19.
Nanomaterials (Basel) ; 12(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296776

RESUMO

Plant-derived natural bioactive molecules are of great therapeutic potential but, so far, their application in nanomedicine has scarcely been studied. This work aimed at comparing two methodologies, i.e., adsorption and in situ incorporation, to prepare hybrid polyphenol/hydroxyapatite nanoparticles. Two flavonoids, baicalin and its aglycone derivative baicalein, and two phenolic acids derived from caffeic acid, rosmarinic and chlorogenic acids, were studied. Adsorption of these polyphenols on pre-formed hydroxyapatite nanoparticles did not modify particle size or shape and loading was less than 10% (w/w). In contrast, presence of polyphenols during the synthesis of nanoparticles significantly impacted and sometimes fully inhibited hydroxyapatite formation but recovered particles could exhibit higher loadings. For most hybrid particles, release profiles consisted of a 24 h burst effect followed by a slow release over 2 weeks. Antioxidant properties of the polyphenols were preserved after adsorption but not when incorporated in situ. These results provide fruitful clues for the valorization of natural bioactive molecules in nanomedicine.

20.
ACS Appl Bio Mater ; 5(6): 2556-2566, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35537179

RESUMO

Silk from Bombyx mori is one of the most exciting materials in nature. The apparently simple arrangement of its two major components─two parallel filaments of silk fibroin (SF) coated by a common sericin (SS) sheath─provides a combination of mechanical and surface properties that can protect the moth during its most vulnerable phase, the pupal stage. Here, we recapitulate the topology of native silk fibers but shape them into three-dimensional porous constructs using an unprecedented design strategy. We demonstrate, for the first time, the potential of these macroporous silk foams as dermal patches for wound protection and for the controlled delivery of Rifamycin (Rif), a model antibiotic. The method implies (i) removing SS from silk fibers; (ii) shaping SF solutions into macroporous foams via ice-templating; (iii) stabilizing the SF macroporous foam in a methanolic solution of Rif; and (iv) coating Rif-loaded SF foams with a SS sheath. The resulting SS@SF foams exhibit water wicking capacity and accommodate up to ∼20% deformation without detaching from a skin model. The antibacterial behavior of Rif-loaded SS@SF foams against Staphylococcus aureus on agar plates outperforms that of SF foams (>1 week and 4 days, respectively). The reassembly of natural materials as macroporous foams─illustrated here for the reconstruction of silk-based materials─can be extended to other multicomponent natural materials and may play an important role in applications where controlled release of molecules and fluid transport are pivotal.


Assuntos
Fibroínas , Sericinas , Animais , Antibacterianos/farmacologia , Biomimética , Gelo , Seda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA