Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 3: 2, 2003 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-12556248

RESUMO

BACKGROUND: Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions. RESULTS: An hydroponic system was designed for Arabidopsis, which is based on two units: a seed-holder and a 1-L tank with its cover. The original agar-containing seed-holder allows the plants to grow from sowing to seed set, without transplanting step and with minimal waste. The optimum nitrate supply was determined for vegetative growth, and the flowering response to photoperiod and vernalization was characterized to show the feasibility and reproducibility of experiments extending over the whole life cycle. How this equipment allowed to overcome experimental problems is illustrated by the analysis of developmental effects of nitrate reductase deficiency in nia1nia2 mutants. CONCLUSION: The hydroponic device described in this paper allows to drive small and large scale cultures of homogeneously growing Arabidopsis plants. Its major advantages are its flexibility, easy handling, fast maintenance and low cost. It should be suitable for many experimental purposes.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Hidroponia/métodos , Arabidopsis/enzimologia , Arabidopsis/genética , Divisão Celular/fisiologia , Hidroponia/instrumentação , Mutação , Nitrato Redutase , Nitrato Redutases/deficiência , Nitrato Redutases/genética , Fotoperíodo , Reprodutibilidade dos Testes , Sementes/crescimento & desenvolvimento
2.
Science ; 316(5827): 1030-3, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17446353

RESUMO

In plants, seasonal changes in day length are perceived in leaves, which initiate long-distance signaling that induces flowering at the shoot apex. The identity of the long-distance signal has yet to be determined. In Arabidopsis, activation of FLOWERING LOCUS T (FT) transcription in leaf vascular tissue (phloem) induces flowering. We found that FT messenger RNA is required only transiently in the leaf. In addition, FT fusion proteins expressed specifically in phloem cells move to the apex and move long distances between grafted plants. Finally, we provide evidence that FT does not activate an intermediate messenger in leaves. We conclude that FT protein acts as a long-distance signal that induces Arabidopsis flowering.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dexametasona/farmacologia , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana Transportadoras/genética , Meristema/metabolismo , Modelos Biológicos , Floema/metabolismo , Fotoperíodo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Exp Bot ; 57(13): 3395-403, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17030536

RESUMO

The photoperiodic induction of flowering is a systemic process requiring translocation of a floral stimulus from the leaves to the shoot apical meristem. In response to this stimulus, the apical meristem stops producing leaves to initiate floral development; this switch in morphogenesis involves a change in the identity of the primordia initiated and in phyllotaxis. The physiological study of the floral transition has led to the identification of several putative floral signals such as sucrose, cytokinins, gibberellins, and reduced N-compounds that are translocated in the phloem sap from leaves to the shoot apical meristem. On the other hand, the genetic approach developed more recently in Arabidopsis thaliana allowed the discovery of many genes that control flowering time. These genes function in 'cascades' within four promotive pathways, the 'photoperiodic', 'autonomous', 'vernalization', and 'gibberellin' pathways, which all converge on the 'integrator' genes SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) and FLOWERING LOCUS T (FT). Recently, several studies have highlighted a role for a product of FT as a component of the floral stimulus or 'florigen'. These recent advances and the proposed mode of action of FT are discussed here.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Biomarcadores/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Domínio MADS/fisiologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Modelos Genéticos , Fotoperíodo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transdução de Sinais/fisiologia
4.
Plant Cell Physiol ; 43(6): 684-8, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12091723

RESUMO

In plants of Sinapis alba and Arabidopsis thaliana, leaf exudate (phloem sap) was analysed during and after a single long day inducing flowering and in control short days. The amounts of carbohydrates and amino acids were measured to estimate the organic C : N ratio. In both species, the C : N ratio of the phloem sap increased markedly and early during the inductive treatment, suggesting that an inequality in organic C and N supply to the apical meristem may be important at floral transition.


Assuntos
Arabidopsis/fisiologia , Carbono/metabolismo , Mostardeira/fisiologia , Nitrogênio/metabolismo , Fotoperíodo , Estruturas Vegetais/fisiologia , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Reprodução/fisiologia
5.
Plant Mol Biol ; 55(2): 253-62, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15604679

RESUMO

We have identified and characterized a FLOWERING PROMOTING FACTOR 1 ( FPF1 ) gene from tobacco ( NtFPF1 ). Over-expression of NtFPF1 leads to early flowering in the day-neutral tobacco Nicotiana tabacum cv. Hicks, and under inductive photoperiods also in the short-day Nicotiana tabacum cv. Hicks Maryland Mammoth ( MM ) tobacco and the long-day plant Nicotiana sylvestris . N. sylvestris wild-type plants remained in the rosette stage and never flowered under non-inductive short-days, whereas 35S:: NtFPF1 transgenic plants bolted but did not flower. However, if treated with gibberellins, transgenic N. sylvestris plants flowered much faster under non-inductive short days than corresponding wild type plants, indicating an additive effect of gibberellins and the NtFPF1 protein in flowering time control. The day-neutral wild type cv. Hicks and the short-day cv. Hicks MM plants exhibit an initial rosette stage, both under short- and long-days. In the transgenic lines, this rosette stage was completely abolished. Wild-type plants of cv. Hicks MM never flowered under long days; however, all transgenic lines over-expressing NtFPF1 flowered under this otherwise non-inductive photoperiod.


Assuntos
Flores/genética , Nicotiana/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , DNA de Plantas/química , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento
6.
J Exp Bot ; 54(392): 2511-7, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14512385

RESUMO

Understanding the complete picture of floral transition is still impaired by the fact that physiological studies mainly concern plant species whose genetics is poorly known, and vice versa. Arabidopsis thaliana has been successfully used to unravel signalling pathways by genetic and molecular approaches, but analyses are still required to determine the physiological signals involved in the control of floral transition. In this work, the putative role of cytokinins was investigated using vegetative plants of Arabidopsis (Columbia) induced to flower synchronously by a single 22 h long day. Cytokinins were analysed in leaf extracts, leaf phloem exudate and in the shoot apical meristem at different times during floral transition. It was found that, in both the leaf tissues and leaf exudate, isopentenyladenine forms of cytokinins increased from 16 h after the start of the long day. At 30 h, the shoot apical meristem of induced plants contained more isopentenyladenine and zeatin than vegetative controls. These cytokinin increases correlate well with the early events of floral transition.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Citocininas/metabolismo , Flores/fisiologia , Meristema/fisiologia , Folhas de Planta/fisiologia , Imuno-Histoquímica , Meristema/citologia
7.
Development ; 131(15): 3615-26, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15229176

RESUMO

Flower development at the shoot apex is initiated in response to environmental cues. Day length is one of the most important of these and is perceived in the leaves. A systemic signal, called the floral stimulus or florigen, is then transmitted from the leaves through the phloem and induces floral development at the shoot apex. Genetic analysis in Arabidopsis identified a pathway of genes required for the initiation of flowering in response to day length. The nuclear zinc-finger protein CONSTANS (CO) plays a central role in this pathway, and in response to long days activates the transcription of FT, which encodes a RAF-kinase-inhibitor-like protein. We show using grafting approaches that CO acts non-cell autonomously to trigger flowering. Although CO is expressed widely, its misexpression from phloem-specific promoters, but not from meristem-specific promoters, is sufficient to induce early flowering and complement the co mutation. The mechanism by which CO triggers flowering from the phloem involves the cell-autonomous activation of FT expression. Genetic approaches indicate that CO activates flowering through both FT-dependent and FT-independent processes, whereas FT acts both in the phloem and the meristem to trigger flowering. We propose that, partly through the activation of FT, CO regulates the synthesis or transport of a systemic flowering signal, thereby positioning this signal within the established hierarchy of regulatory proteins that controls flowering.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Flores/fisiologia , Fotoperíodo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA