Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38538141

RESUMO

The human hand possesses both consolidated motor skills and remarkable flexibility in adapting to ongoing task demands. However, the underlying mechanisms by which the brain balances stability and flexibility remain unknown. In the absence of external input or behavior, spontaneous (intrinsic) brain connectivity is thought to represent a prior of stored memories. In this study, we investigated how manual dexterity modulates spontaneous functional connectivity in the motor cortex during hand movement. Using magnetoencephalography, in 47 human participants (both sexes), we examined connectivity modulations in the α and ß frequency bands at rest and during two motor tasks (i.e., finger tapping or toe squeezing). The flexibility and stability of such modulations allowed us to identify two groups of participants with different levels of performance (high and low performers) on the nine-hole peg test, a test of manual dexterity. In the α band, participants with higher manual dexterity showed distributed decreases of connectivity, specifically in the motor cortex, increased segregation, and reduced nodal centrality. Participants with lower manual dexterity showed an opposite pattern. Notably, these patterns from the brain to behavior are mirrored by results from behavior to the brain. Indeed, when participants were divided using the median split of the dexterity score, we found the same connectivity patterns. In summary, this experiment shows that a long-term motor skill-manual dexterity-influences the way the motor systems respond during movements.


Assuntos
Magnetoencefalografia , Córtex Motor , Destreza Motora , Humanos , Masculino , Feminino , Adulto , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Adulto Jovem , Magnetoencefalografia/métodos , Ritmo alfa/fisiologia , Mãos/fisiologia , Desempenho Psicomotor/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia
2.
PLoS Comput Biol ; 20(1): e1011274, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215166

RESUMO

The network control theory framework holds great potential to inform neurostimulation experiments aimed at inducing desired activity states in the brain. However, the current applicability of the framework is limited by inappropriate modeling of brain dynamics, and an overly ambitious focus on whole-brain activity control. In this work, we leverage recent progress in linear modeling of brain dynamics (effective connectivity) and we exploit the concept of target controllability to focus on the control of a single region or a small subnetwork of nodes. We discuss when control may be possible with a reasonably low energy cost and few stimulation loci, and give general predictions on where to stimulate depending on the subset of regions one wishes to control. Importantly, using the robustly asymmetric effective connectome instead of the symmetric structural connectome (as in previous research), we highlight the fundamentally different roles in- and out-hubs have in the control problem, and the relevance of inhibitory connections. The large degree of inter-individual variation in the effective connectome implies that the control problem is best formulated at the individual level, but we discuss to what extent group results may still prove useful.


Assuntos
Conectoma , Rede Nervosa , Rede Nervosa/fisiologia , Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética
3.
Neurobiol Dis ; 196: 106521, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697575

RESUMO

BACKGROUND: Lesion network mapping (LNM) is a popular framework to assess clinical syndromes following brain injury. The classical approach involves embedding lesions from patients into a normative functional connectome and using the corresponding functional maps as proxies for disconnections. However, previous studies indicated limited predictive power of this approach in behavioral deficits. We hypothesized similarly low predictiveness for overall survival (OS) in glioblastoma (GBM). METHODS: A retrospective dataset of patients with GBM was included (n = 99). Lesion masks were registered in the normative space to compute disconnectivity maps. The brain functional normative connectome consisted in data from 173 healthy subjects obtained from the Human Connectome Project. A modified version of the LNM was then applied to core regions of GBM masks. Linear regression, classification, and principal component (PCA) analyses were conducted to explore the relationship between disconnectivity and OS. OS was considered both as continuous and categorical (low, intermediate, and high survival) variable. RESULTS: The results revealed no significant associations between OS and network disconnection strength when analyzed at both voxel-wise and classification levels. Moreover, patients stratified into different OS groups did not exhibit significant differences in network connectivity patterns. The spatial similarity among the first PCA of network maps for each OS group suggested a lack of distinctive network patterns associated with survival duration. CONCLUSIONS: Compared with indirect structural measures, functional indirect mapping does not provide significant predictive power for OS in patients with GBM. These findings are consistent with previous research that demonstrated the limitations of indirect functional measures in predicting clinical outcomes, underscoring the need for more comprehensive methodologies and a deeper understanding of the factors influencing clinical outcomes in this challenging disease.


Assuntos
Neoplasias Encefálicas , Conectoma , Glioblastoma , Imageamento por Ressonância Magnética , Humanos , Glioblastoma/mortalidade , Glioblastoma/diagnóstico por imagem , Glioblastoma/fisiopatologia , Masculino , Feminino , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/diagnóstico por imagem , Pessoa de Meia-Idade , Conectoma/métodos , Estudos Retrospectivos , Adulto , Idoso , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
4.
Neurobiol Dis ; : 106613, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079580

RESUMO

Focal brain injuries, such as stroke, cause local structural damage as well as alteration of neuronal activity in distant brain regions. Experimental evidence suggests that one of these changes is the appearance of sleep-like slow waves in the otherwise awake individual. This pattern is prominent in areas surrounding the damaged region and can extend to connected brain regions in a way consistent with the individual's specific long-range connectivity patterns. In this paper we present a generative whole-brain model based on (f)MRI data that, in combination with the disconnection mask associated with a given patient, explains the effects of the sleep-like slow waves originated in the vicinity of the lesion area on the distant brain activity. Our model reveals new aspects of their interaction, being able to reproduce functional connectivity patterns of stroke patients and offering a detailed, causal understanding of how stroke-related effects, in particular slow waves, spread throughout the brain. The presented findings demonstrate that the model effectively captures the links between stroke occurrences, sleep-like slow waves, and their subsequent spread across the human brain.

5.
Eur J Neurol ; 31(1): e16075, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823698

RESUMO

BACKGROUND AND PURPOSE: Alcohol withdrawal seizures (AWS) are a well-known complication of chronic alcohol abuse, but there is currently little knowledge of their long-term relapse rate and prognosis. The aims of this study were to identify risk factors for AWS recurrence and to study the overall outcome of patients after AWS. METHODS: In this retrospective single-center study, we included patients who were admitted to the Emergency Department after an AWS between January 1, 2013 and August 10, 2021 and for whom an electroencephalogram (EEG) was requested. AWS relapses up until April 29, 2022 were researched. We compared history, treatment with benzodiazepines or antiseizure medications (ASMs), laboratory, EEG and computed tomography findings between patients with AWS relapse (r-AWS) and patients with no AWS relapse (nr-AWS). RESULTS: A total of 199 patients were enrolled (mean age 53 ± 12 years; 78.9% men). AWS relapses occurred in 11% of patients, after a median time of 470.5 days. Brain computed tomography (n = 182) showed pathological findings in 35.7%. Risk factors for relapses were history of previous AWS (p = 0.013), skull fractures (p = 0.004) at the index AWS, and possibly epileptiform EEG abnormalities (p = 0.07). Benzodiazepines or other ASMs, taken before or after the index event, did not differ between the r-AWS and the nr-AWS group. The mortality rate was 2.9%/year of follow-up, which was 13 times higher compared to the general population. Risk factors for death were history of AWS (p < 0.001) and encephalopathic EEG (p = 0.043). CONCLUSIONS: Delayed AWS relapses occur in 11% of patients and are associated with risk factors (previous AWS >24 h apart, skull fractures, and pathological EEG findings) that also increase the epilepsy risk, that is, predisposition for seizures, if not treated. Future prospective studies are mandatory to determine appropriate long-term diagnostic and therapeutic strategies, in order to reduce the risk of relapse and mortality associated with AWS.


Assuntos
Convulsões por Abstinência de Álcool , Alcoolismo , Fraturas Cranianas , Síndrome de Abstinência a Substâncias , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Feminino , Convulsões por Abstinência de Álcool/complicações , Convulsões por Abstinência de Álcool/induzido quimicamente , Convulsões por Abstinência de Álcool/tratamento farmacológico , Alcoolismo/complicações , Síndrome de Abstinência a Substâncias/complicações , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Estudos Retrospectivos , Estudos Prospectivos , Benzodiazepinas/uso terapêutico , Recidiva , Fraturas Cranianas/induzido quimicamente , Fraturas Cranianas/complicações , Fraturas Cranianas/tratamento farmacológico
6.
Lancet Neurol ; 23(7): 740-748, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876751

RESUMO

Despite substantial advances in cancer treatment, for patients with glioblastoma prognosis remains bleak. The emerging field of cancer neuroscience reveals intricate functional interplays between glioblastoma and the cellular architecture of the brain, encompassing neurons, glia, and vessels. New findings underscore the role of structural and functional connections within hierarchical networks, known as the connectome. These connections contribute to the location, spread, and recurrence of a glioblastoma, and a patient's overall survival, revealing a complex interplay between the tumour and the CNS. This mounting evidence prompts a paradigm shift, challenging the perception of glioblastomas as mere foreign bodies within the brain. Instead, these tumours are intricately woven into the structural and functional fabric of the brain. This radical change in thinking holds profound implications for the understanding and treatment of glioblastomas, which could unveil new prognostic factors and surgical strategies and optimise radiotherapy. Additionally, a connectivity approach suggests that non-invasive brain stimulation could disrupt pathological neuron-glioma interactions within specific networks.


Assuntos
Neoplasias Encefálicas , Encéfalo , Conectoma , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/patologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Rede Nervosa/fisiopatologia , Rede Nervosa/patologia
7.
Nat Commun ; 15(1): 7207, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174560

RESUMO

By connecting old and recent notions, different spatial scales, and research domains, we introduce a novel framework on the consequences of brain injury focusing on a key role of slow waves. We argue that the long-standing finding of EEG slow waves after brain injury reflects the intrusion of sleep-like cortical dynamics during wakefulness; we illustrate how these dynamics are generated and how they can lead to functional network disruption and behavioral impairment. Finally, we outline a scenario whereby post-injury slow waves can be modulated to reawaken parts of the brain that have fallen asleep to optimize rehabilitation strategies and promote recovery.


Assuntos
Lesões Encefálicas , Eletroencefalografia , Sono , Vigília , Vigília/fisiologia , Humanos , Lesões Encefálicas/fisiopatologia , Sono/fisiologia , Córtex Cerebral/fisiopatologia , Animais , Encéfalo/fisiopatologia , Rede Nervosa/fisiopatologia
8.
Sci Rep ; 14(1): 18298, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112629

RESUMO

Hand visibility affects motor control, perception, and attention, as visual information is integrated into an internal model of somatomotor control. Spontaneous brain activity, i.e., at rest, in the absence of an active task, is correlated among somatomotor regions that are jointly activated during motor tasks. Recent studies suggest that spontaneous activity patterns not only replay task activation patterns but also maintain a model of the body's and environment's statistical regularities (priors), which may be used to predict upcoming behavior. Here, we test whether spontaneous activity in the human somatomotor cortex as measured using fMRI is modulated by visual stimuli that display hands vs. non-hand stimuli and by the use/action they represent. A multivariate pattern analysis was performed to examine the similarity between spontaneous activity patterns and task-evoked patterns to the presentation of natural hands, robot hands, gloves, or control stimuli (food). In the left somatomotor cortex, we observed a stronger (multivoxel) spatial correlation between resting state activity and natural hand picture patterns compared to other stimuli. No task-rest similarity was found in the visual cortex. Spontaneous activity patterns in somatomotor brain regions code for the visual representation of human hands and their use.


Assuntos
Mapeamento Encefálico , Mãos , Imageamento por Ressonância Magnética , Percepção Visual , Humanos , Mãos/fisiologia , Masculino , Feminino , Adulto , Percepção Visual/fisiologia , Adulto Jovem , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Córtex Motor/fisiologia , Córtex Motor/diagnóstico por imagem , Descanso/fisiologia , Estimulação Luminosa , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem
9.
J Cereb Blood Flow Metab ; 44(8): 1433-1449, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38443762

RESUMO

Brain glucose metabolism, which can be investigated at the macroscale level with [18F]FDG PET, displays significant regional variability for reasons that remain unclear. Some of the functional drivers behind this heterogeneity may be captured by resting-state functional magnetic resonance imaging (rs-fMRI). However, the full extent to which an fMRI-based description of the brain's spontaneous activity can describe local metabolism is unknown. Here, using two multimodal datasets of healthy participants, we built a multivariable multilevel model of functional-metabolic associations, assessing multiple functional features, describing the 1) rs-fMRI signal, 2) hemodynamic response, 3) static and 4) time-varying functional connectivity, as predictors of the human brain's metabolic architecture. The full model was trained on one dataset and tested on the other to assess its reproducibility. We found that functional-metabolic spatial coupling is nonlinear and heterogeneous across the brain, and that local measures of rs-fMRI activity and synchrony are more tightly coupled to local metabolism. In the testing dataset, the degree of functional-metabolic spatial coupling was also related to peripheral metabolism. Overall, although a significant proportion of regional metabolic variability can be described by measures of spontaneous activity, additional efforts are needed to explain the remaining variance in the brain's 'dark energy'.


Assuntos
Encéfalo , Glucose , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Masculino , Glucose/metabolismo , Feminino , Adulto , Descanso/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Metabolismo Energético/fisiologia , Fluordesoxiglucose F18 , Mapeamento Encefálico/métodos , Adulto Jovem
10.
Front Neurosci ; 18: 1401068, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911599

RESUMO

Objectives: An important challenge in epilepsy is to define biomarkers of response to treatment. Many electroencephalography (EEG) methods and indices have been developed mainly using linear methods, e.g., spectral power and individual alpha frequency peak (IAF). However, brain activity is complex and non-linear, hence there is a need to explore EEG neurodynamics using nonlinear approaches. Here, we use the Fractal Dimension (FD), a measure of whole brain signal complexity, to measure the response to anti-seizure therapy in patients with Focal Epilepsy (FE) and compare it with linear methods. Materials: Twenty-five drug-responder (DR) patients with focal epilepsy were studied before (t1, named DR-t1) and after (t2, named DR-t2) the introduction of the anti-seizure medications (ASMs). DR-t1 and DR-t2 EEG results were compared against 40 age-matched healthy controls (HC). Methods: EEG data were investigated from two different angles: frequency domain-spectral properties in δ, θ, α, ß, and γ bands and the IAF peak, and time-domain-FD as a signature of the nonlinear complexity of the EEG signals. Those features were compared among the three groups. Results: The δ power differed between DR patients pre and post-ASM and HC (DR-t1 vs. HC, p < 0.01 and DR-t2 vs. HC, p < 0.01). The θ power differed between DR-t1 and DR-t2 (p = 0.015) and between DR-t1 and HC (p = 0.01). The α power, similar to the δ, differed between DR patients pre and post-ASM and HC (DR-t1 vs. HC, p < 0.01 and DR-t2 vs. HC, p < 0.01). The IAF value was lower for DR-t1 than DR-t2 (p = 0.048) and HC (p = 0.042). The FD value was lower in DR-t1 than in DR-t2 (p = 0.015) and HC (p = 0.011). Finally, Bayes Factor analysis showed that FD was 195 times more likely to separate DR-t1 from DR-t2 than IAF and 231 times than θ. Discussion: FD measured in baseline EEG signals is a non-linear brain measure of complexity more sensitive than EEG power or IAF in detecting a response to ASMs. This likely reflects the non-oscillatory nature of neural activity, which FD better describes. Conclusion: Our work suggests that FD is a promising measure to monitor the response to ASMs in FE.

11.
Brain Commun ; 6(4): fcae237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077378

RESUMO

Computational whole-brain models describe the resting activity of each brain region based on a local model, inter-regional functional interactions, and a structural connectome that specifies the strength of inter-regional connections. Strokes damage the healthy structural connectome that forms the backbone of these models and produce large alterations in inter-regional functional interactions. These interactions are typically measured by correlating the time series of the activity between two brain regions in a process, called resting functional connectivity. We show that adding information about the structural disconnections produced by a patient's lesion to a whole-brain model previously trained on structural and functional data from a large cohort of healthy subjects enables the prediction of the resting functional connectivity of the patient and fits the model directly to the patient's data (Pearson correlation = 0.37; mean square error = 0.005). Furthermore, the model dynamics reproduce functional connectivity-based measures that are typically abnormal in stroke patients and measures that specifically isolate these abnormalities. Therefore, although whole-brain models typically involve a large number of free parameters, the results show that, even after fixing those parameters, the model reproduces results from a population very different than that on which the model was trained. In addition to validating the model, these results show that the model mechanistically captures the relationships between the anatomical structure and the functional activity of the human brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA