Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 32(7): 1343-1354, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34933939

RESUMO

Chromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called enhancer hijacking We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with hijacking of super-enhancers of other common oncogenes in B cell (MAF, MYC, and FGFR3/NSD2) and T cell malignancies (LMO2, TLX3, and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, in which the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.


Assuntos
Epigenômica , Translocação Genética , Cromatina/genética , Histonas , Humanos , Oncogenes
2.
Cell ; 135(6): 1028-38, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19070574

RESUMO

Chromosomal translocation requires formation of paired double-strand DNA breaks (DSBs) on heterologous chromosomes. One of the most well characterized oncogenic translocations juxtaposes c-myc and the immunoglobulin heavy-chain locus (IgH) and is found in Burkitt's lymphomas in humans and plasmacytomas in mice. DNA breaks in IgH leading to c-myc/IgH translocations are created by activation-induced cytidine deaminase (AID) during antibody class switch recombination or somatic hypermutation. However, the source of DNA breaks at c-myc is not known. Here, we provide evidence for the c-myc promoter region being required in targeting AID-mediated DNA damage to produce DSBs in c-myc that lead to c-myc/IgH translocations in primary B lymphocytes. Thus, in addition to producing somatic mutations and DNA breaks in antibody genes, AID is also responsible for the DNA lesions in oncogenes that are required for their translocation.


Assuntos
Citidina Desaminase/metabolismo , Genes de Cadeia Pesada de Imunoglobulina , Genes myc , Translocação Genética , Animais , Linfócitos B/metabolismo , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Quebras de DNA de Cadeia Dupla , Células-Tronco Embrionárias , Humanos , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasmocitoma/genética , Plasmocitoma/metabolismo
3.
Blood ; 134(24): 2171-2182, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31530562

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy resulting from the dysregulation of signaling pathways that control intrathymic T-cell development. Relapse rates are still significant, and prognosis is particularly bleak for relapsed patients. Therefore, development of novel therapies specifically targeting pathways controlling leukemia-initiating cell (LIC) activity is mandatory for fighting refractory T-ALL. The interleukin-7 receptor (IL-7R) is a crucial T-cell developmental pathway that is commonly expressed in T-ALL and has been implicated in leukemia progression; however, the significance of IL-7R/IL-7 signaling in T-ALL pathogenesis and its contribution to disease relapse remain unknown. To directly explore whether IL-7R targeting may be therapeutically efficient against T-ALL relapse, we focused on a known Notch1-induced T-ALL model, because a majority of T-ALL patients harbor activating mutations in NOTCH1, which is a transcriptional regulator of IL-7R expression. Using loss-of-function approaches, we show that Il7r-deficient, but not wild-type, mouse hematopoietic progenitors transduced with constitutively active Notch1 failed to generate leukemia upon transplantation into immunodeficient mice, thus providing formal evidence that IL-7R function is essential for Notch1-induced T-cell leukemogenesis. Moreover, we demonstrate that IL-7R expression is an early functional biomarker of T-ALL cells with LIC potential and report that impaired IL-7R signaling hampers engraftment and progression of patient-derived T-ALL xenografts. Notably, we show that IL-7R-dependent LIC activity and leukemia progression can be extended to human B-cell acute lymphoblastic leukemia (B-ALL). These results have important therapeutic implications, highlighting the relevance that targeting normal IL-7R signaling may have in future therapeutic interventions, particularly for preventing T-ALL (and B-ALL) relapse.


Assuntos
Suscetibilidade a Doenças , Células-Tronco Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Interleucina-7/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores de Interleucina-7/genética , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Biol Chem ; 294(37): 13580-13592, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31285261

RESUMO

Antigen receptor assembly in lymphocytes involves stringently-regulated coordination of specific DNA rearrangement events across several large chromosomal domains. Previous studies indicate that transcription factors such as paired box 5 (PAX5), Yin Yang 1 (YY1), and CCCTC-binding factor (CTCF) play a role in regulating the accessibility of the antigen receptor loci to the V(D)J recombinase, which is required for these rearrangements. To gain clues about the role of CTCF binding at the murine immunoglobulin heavy chain (IgH) locus, we utilized a computational approach that identified 144 putative CTCF-binding sites within this locus. We found that these CTCF sites share a consensus motif distinct from other CTCF sites in the mouse genome. Additionally, we could divide these CTCF sites into three categories: intergenic sites remote from any coding element, upstream sites present within 8 kb of the VH-leader exon, and recombination signal sequence (RSS)-associated sites characteristically located at a fixed distance (∼18 bp) downstream of the RSS. We noted that the intergenic and upstream sites are located in the distal portion of the VH locus, whereas the RSS-associated sites are located in the DH-proximal region. Computational analysis indicated that the prevalence of CTCF-binding sites at the IgH locus is evolutionarily conserved. In all species analyzed, these sites exhibit a striking strand-orientation bias, with >98% of the murine sites being present in one orientation with respect to VH gene transcription. Electrophoretic mobility shift and enhancer-blocking assays and ChIP-chip analysis confirmed CTCF binding to these sites both in vitro and in vivo.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Imunidade Adaptativa/genética , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Rearranjo Gênico , Humanos , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina , Células K562 , Camundongos , Camundongos Knockout , Células NIH 3T3 , Motivos de Nucleotídeos , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/metabolismo
5.
Immunity ; 34(3): 303-14, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21435585

RESUMO

T cell fate is associated with mutually exclusive expression of CD4 or CD8 in helper and cytotoxic T cells, respectively. How expression of one locus is temporally coordinated with repression of the other has been a long-standing enigma, though we know RUNX transcription factors activate the Cd8 locus, silence the Cd4 locus, and repress the Zbtb7b locus (encoding the transcription factor ThPOK), which is required for CD4 expression. Here we found that nuclear organization was altered by interplay among members of this transcription factor circuitry: RUNX binding mediated association of Cd4 and Cd8 whereas ThPOK binding kept the loci apart. Moreover, targeted deletions within Cd4 modulated CD8 expression and pericentromeric repositioning of Cd8. Communication between Cd4 and Cd8 thus appears to enable long-range epigenetic regulation to ensure that expression of one excludes the other in mature CD4 or CD8 single-positive (SP) cells.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Subunidades alfa de Fatores de Ligação ao Core/imunologia , Regulação da Expressão Gênica/imunologia , Animais , Epigenômica , Citometria de Fluxo , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL
6.
Semin Immunol ; 22(6): 353-61, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20863715

RESUMO

Within the lymphocyte lineages, restriction of immunoglobulin V(D)J recombination to B cells and T cell receptor (TCR) recombination to T cells is governed by a myriad of epigenetic mechanisms that control the chromatin accessibility of these loci to the Rag recombinase machinery in a lineage and developmental stage-specific manner. These mechanisms operate both locally at individual gene segments, and globally over large chromatin domains in these enormous multigene loci. In this review we will explore the established and emerging roles of three aspects of epigenetic regulation that contribute to large-scale control of the immunoglobulin heavy chain locus in B cells: non-coding RNA transcription, regulatory elements, and nuclear organization. Recent conceptual and technological advances have produced a paradigm shift in our thinking about how these components regulate gene expression in general and V(D)J recombination in particular.


Assuntos
Epigênese Genética , Rearranjo Gênico , Genes de Imunoglobulinas , RNA não Traduzido/genética , Sequências Reguladoras de Ácido Nucleico , Animais , Linfócitos B/metabolismo , Humanos , Linfócitos T/metabolismo
7.
Blood ; 118(4): 1041-51, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21628403

RESUMO

The t(12;21) translocation that generates the ETV6-RUNX1 (TEL-AML1) fusion gene, is the most common chromosomal rearrangement in childhood cancer and is exclusively associated with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The translocation arises in utero and is necessary but insufficient for the development of leukemia. Single-nucleotide polymorphism array analysis of ETV6-RUNX1 patient samples has identified multiple additional genetic alterations; however, the role of these lesions in leukemogenesis remains undetermined. Moreover, murine models of ETV6-RUNX1 ALL that faithfully recapitulate the human disease are lacking. To identify novel genes that cooperate with ETV6-RUNX1 in leukemogenesis, we generated a mouse model that uses the endogenous Etv6 locus to coexpress the Etv6-RUNX1 fusion and Sleeping Beauty transposase. An insertional mutagenesis screen was performed by intercrossing these mice with those carrying a Sleeping Beauty transposon array. In contrast to previous models, a substantial proportion (20%) of the offspring developed BCP-ALL. Isolation of the transposon insertion sites identified genes known to be associated with BCP-ALL, including Ebf1 and Epor, in addition to other novel candidates. This is the first mouse model of ETV6-RUNX1 to develop BCP-ALL and provides important insight into the cooperating genetic alterations in ETV6-RUNX1 leukemia.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Western Blotting , Separação Celular , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transposases/genética
8.
Curr Top Microbiol Immunol ; 356: 65-89, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21695632

RESUMO

Despite using the same Rag recombinase machinery expressed in both lymphocyte lineages, V(D)J recombination of immunoglobulins only occurs in B cells and T cell receptor recombination is confined to T cells. This vital segregation of recombination targets is governed by the coordinated efforts of several epigenetic mechanisms that control both the general chromatin accessibility of these loci to the Rag recombinase, and the movement and synapsis of distal gene segments in these enormous multigene AgR loci, in a lineage and developmental stage-specific manner. These mechanisms operate both locally at individual gene segments and AgR domains, and globally over large distances in the nucleus. Here we will discuss the roles of several epigenetic components that regulate V(D)J recombination of the immunoglobulin heavy chain locus in B cells, both in the context of the locus itself, and of its 3D nuclear organization, focusing in particular on non-coding RNA transcription. We will also speculate about how several newly described epigenetic mechanisms might impact on AgR regulation.


Assuntos
Linfócitos B/metabolismo , Epigenômica , Regulação da Expressão Gênica no Desenvolvimento , Rearranjo Gênico do Linfócito B , Recombinação V(D)J , Animais , Linfócitos B/citologia , Epigênese Genética , Humanos
9.
Cell Rep ; 42(9): 113074, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676766

RESUMO

To produce a diverse antibody repertoire, immunoglobulin heavy-chain (Igh) loci undergo large-scale alterations in structure to facilitate juxtaposition and recombination of spatially separated variable (VH), diversity (DH), and joining (JH) genes. These chromosomal alterations are poorly understood. Uncovering their patterns shows how chromosome dynamics underpins antibody diversity. Using tiled Capture Hi-C, we produce a comprehensive map of chromatin interactions throughout the 2.8-Mb Igh locus in progenitor B cells. We find that the Igh locus folds into semi-rigid subdomains and undergoes flexible looping of the VH genes to its 3' end, reconciling two views of locus organization. Deconvolution of single Igh locus conformations using polymer simulations identifies thousands of different structures. This heterogeneity may underpin the diversity of V(D)J recombination events. All three immunoglobulin loci also participate in a highly specific, developmentally regulated network of interchromosomal interactions with genes encoding B cell-lineage factors. This suggests a model of interchromosomal coordination of B cell development.


Assuntos
Linfócitos B , Imunoglobulinas , Recombinação V(D)J/genética , Genes de Cadeia Pesada de Imunoglobulina/genética , Células Precursoras de Linfócitos B
10.
J Biol Chem ; 285(13): 9327-9338, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20100833

RESUMO

During immunoglobulin heavy chain (Igh) V(D)J recombination, D to J precedes V to DJ recombination in an ordered manner, controlled by differential chromatin accessibility of the V and DJ regions and essential for correct antibody assembly. However, with the exception of the intronic enhancer Emu, which regulates D to J recombination, cis-acting regulatory elements have not been identified. We have assembled the sequence of a strategically located 96-kb V-D intergenic region in the mouse Igh and analyzed its activity during lymphocyte development. We show that Emu-dependent D antisense transcription, proposed to open chromatin before D to J recombination, extends into the V-D region for more than 30 kb in B cells before, during, and after V(D)J recombination and in T cells but terminates 40 kb from the first V gene. Thus, subsequent V antisense transcription before V to DJ recombination is actively prevented and must be independently activated. To find cis-acting elements that regulate this differential chromatin opening, we identified six DNase I-hypersensitive sites (HSs) in the V-D region. One conserved HS upstream of the first D gene locally regulates D genes. Two further conserved HSs near the D region mark a sharp decrease in antisense transcription, and both HSs bind CTCF in vivo. Further, they both possess enhancer-blocking activity in vivo. Thus, we propose that they are enhancer-blocking insulators preventing Emu-dependent chromatin opening extending into the V region. Thus, they are the first elements identified that may control ordered V(D)J recombination and correct assembly of antibody genes.


Assuntos
Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Recombinação Genética , Alelos , Animais , Células da Medula Óssea/citologia , Cromatina/metabolismo , Biologia Computacional/métodos , DNA Intergênico/genética , Rearranjo Gênico , Genes de Cadeia Pesada de Imunoglobulina , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Modelos Imunológicos , Oligonucleotídeos Antissenso/genética , Regiões Promotoras Genéticas , Linfócitos T/metabolismo
11.
Nat Commun ; 12(1): 2098, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828098

RESUMO

The transition from naive to primed pluripotency is accompanied by an extensive reorganisation of transcriptional and epigenetic programmes. However, the role of transcriptional enhancers and three-dimensional chromatin organisation in coordinating these developmental programmes remains incompletely understood. Here, we generate a high-resolution atlas of gene regulatory interactions, chromatin profiles and transcription factor occupancy in naive and primed human pluripotent stem cells, and develop a network-graph approach to examine the atlas at multiple spatial scales. We uncover highly connected promoter hubs that change substantially in interaction frequency and in transcriptional co-regulation between pluripotent states. Small hubs frequently merge to form larger networks in primed cells, often linked by newly-formed Polycomb-associated interactions. We identify widespread state-specific differences in enhancer activity and interactivity that correspond with an extensive reconfiguration of OCT4, SOX2 and NANOG binding and target gene expression. These findings provide multilayered insights into the chromatin-based gene regulatory control of human pluripotent states.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Pluripotentes/metabolismo , Cromatina/metabolismo , Metilação de DNA , Elementos Facilitadores Genéticos , Humanos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo
12.
Cell Rep ; 36(2): 109349, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260907

RESUMO

Generation of the primary antibody repertoire requires V(D)J recombination of hundreds of gene segments in the immunoglobulin heavy chain (Igh) locus. The role of interleukin-7 receptor (IL-7R) signaling in Igh recombination has been difficult to partition from its role in B cell survival and proliferation. With a detailed description of the Igh repertoire in murine IL-7Rα-/- bone marrow B cells, we demonstrate that IL-7R signaling profoundly influences VH gene selection during VH-to-DJH recombination. We find skewing toward 3' VH genes during de novo VH-to-DJH recombination more severe than the fetal liver (FL) repertoire and uncover a role for IL-7R signaling in DH-to-JH recombination. Transcriptome and accessibility analyses suggest reduced expression of B lineage transcription factors (TFs) and targets and loss of DH and VH antisense transcription in IL-7Rα-/- B cells. Thus, in addition to its roles in survival and proliferation, IL-7R signaling shapes the Igh repertoire by activating underpinning mechanisms.


Assuntos
Diversidade de Anticorpos/genética , Linfócitos B/metabolismo , Medula Óssea/metabolismo , Genes de Cadeia Pesada de Imunoglobulina , Região Variável de Imunoglobulina/genética , Receptores de Interleucina-7/metabolismo , Transdução de Sinais , Animais , Sequência de Bases , Linhagem da Célula/genética , Cromatina/metabolismo , DNA Intergênico/genética , Feto/metabolismo , Fígado/embriologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Motivos de Nucleotídeos/genética , Fator de Transcrição PAX5/metabolismo , Transativadores/metabolismo , Transcrição Gênica
13.
PLoS Biol ; 5(8): e192, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17622196

RESUMO

Transcription in mammalian nuclei is highly compartmentalized in RNA polymerase II-enriched nuclear foci known as transcription factories. Genes in cis and trans can share the same factory, suggesting that genes migrate to preassembled transcription sites. We used fluorescent in situ hybridization to investigate the dynamics of gene association with transcription factories during immediate early (IE) gene induction in mouse B lymphocytes. Here, we show that induction involves rapid gene relocation to transcription factories. Importantly, we find that the Myc proto-oncogene on Chromosome 15 is preferentially recruited to the same transcription factory as the highly transcribed Igh gene located on Chromosome 12. Myc and Igh are the most frequent translocation partners in plasmacytoma and Burkitt lymphoma. Our results show that transcriptional activation of IE genes involves rapid relocation to preassembled transcription factories. Furthermore, the data imply a direct link between the nonrandom interchromosomal organization of transcribed genes at transcription factories and the incidence of specific chromosomal translocations.


Assuntos
Regulação da Expressão Gênica , Genes Precoces , Genes de Cadeia Pesada de Imunoglobulina , Cadeias Pesadas de Imunoglobulinas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica , Alelos , Animais , Linfócitos B/citologia , Linfócitos B/fisiologia , Núcleo Celular/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II/metabolismo , Ativação Transcricional , Translocação Genética
14.
Mol Cell Biol ; 27(15): 5523-33, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17526723

RESUMO

V(D)J recombination is believed to be regulated by alterations in chromatin accessibility to the recombinase machinery, but the mechanisms responsible remain unclear. We previously proposed that antisense intergenic transcription, activated throughout the mouse Igh VH region in pro-B cells, remodels chromatin for VH-to-DJH recombination. Using RNA fluorescence in situ hybridization, we now show that antisense intergenic transcription occurs throughout the Igh DHJH region before D-to-J recombination, indicating that this is a widespread process in V(D)J recombination. Transcription initiates near the Igh intronic enhancer Emu and is abrogated in mice lacking this enhancer, indicating that Emu regulates DH antisense transcription. Emu was recently demonstrated to regulate DH-to-JH recombination of the Igh locus. Together, these data suggest that Emu controls DH-to-JH recombination by activating this form of germ line Igh transcription, thus providing a long-range, processive mechanism by which Emu can regulate chromatin accessibility throughout the DH region. In contrast, Emu deletion has no effect on VH antisense intergenic transcription, which is rarely associated with DH antisense transcription, suggesting differential regulation and separate roles for these processes at sequential stages of V(D)J recombination. These results support a directive role for antisense intergenic transcription in enabling access to the recombination machinery.


Assuntos
DNA Antissenso/genética , DNA Intergênico/genética , Elementos Facilitadores Genéticos/genética , Genes de Cadeia Pesada de Imunoglobulina , Íntrons/genética , Recombinação Genética , Transcrição Gênica , Alelos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Sítio de Iniciação de Transcrição
15.
Front Immunol ; 11: 633705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679727

RESUMO

A functional adaptive immune system must generate enormously diverse antigen receptor (AgR) repertoires from a limited number of AgR genes, using a common mechanism, V(D)J recombination. The AgR loci are among the largest in the genome, and individual genes must overcome huge spatial and temporal challenges to co-localize with optimum variability. Our understanding of the complex mechanisms involved has increased enormously, due in part to new technologies for high resolution mapping of AgR structure and dynamic movement, underpinning mechanisms, and resulting repertoires. This review will examine these advances using the paradigm of the mouse immunoglobulin heavy chain (Igh) locus. We will discuss the key regulatory elements implicated in Igh locus structure. Recent next generation repertoire sequencing methods have shown that local chromatin state at V genes contribute to recombination efficiency. Next on the multidimensional scale, we will describe imaging studies that provided the first picture of the large-scale dynamic looping and contraction the Igh locus undergoes during recombination. We will discuss chromosome conformation capture (3C)-based technologies that have provided higher resolution pictures of Igh locus structure, including the different models that have evolved. We will consider the key transcription factors (PAX5, YY1, E2A, Ikaros), and architectural factors, CTCF and cohesin, that regulate these processes. Lastly, we will discuss a plethora of recent exciting mechanistic findings. These include Rag recombinase scanning for convergent RSS sequences within DNA loops; identification of Igh loop extrusion, and its putative role in Rag scanning; the roles of CTCF, cohesin and cohesin loading factor, WAPL therein; a new phase separation model for Igh locus compartmentalization. We will draw these together and conclude with some horizon-scanning and unresolved questions.


Assuntos
Proteínas de Ligação a DNA/imunologia , Loci Gênicos/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Fatores de Transcrição/imunologia , Recombinação V(D)J/imunologia , Animais , Humanos , Camundongos
16.
N Biotechnol ; 55: 65-76, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31600579

RESUMO

We describe the 'Crescendo Mouse', a human VH transgenic platform combining an engineered heavy chain locus with diverse human heavy chain V, D and J genes, a modified mouse Cγ1 gene and complete 3' regulatory region, in a triple knock-out (TKO) mouse background devoid of endogenous immunoglobulin expression. The addition of the engineered heavy chain locus to the TKO mouse restored B cell development, giving rise to functional B cells that responded to immunization with a diverse response that comprised entirely 'heavy chain only' antibodies. Heavy chain variable (VH) domain libraries were rapidly mined using phage display technology, yielding diverse high-affinity human VH that had undergone somatic hypermutation, lacked aggregation and showed enhanced expression in E. coli. The Crescendo Mouse produces human VH fragments, or Humabody® VH, with excellent bio-therapeutic potential, as exemplified here by the generation of antagonistic Humabody® VH specific for human IL17A and IL17RA.


Assuntos
Anticorpos/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/imunologia , Animais , Formação de Anticorpos/imunologia , Fenômenos Biofísicos , Humanos , Camundongos Knockout
17.
Adv Exp Med Biol ; 650: 59-72, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19731801

RESUMO

V(D)J recombination in lymphocytes is the cutting and pasting together of antigen receptor genes in cis to generate the enormous variety of coding sequences required to produce diverse antigen receptor proteins. It is the key role of the adaptive immune response, which must potentially combat millions of different foreign antigens. Most antigen receptor loci have evolved to be extremely large and contain multiple individual V, D and J genes. The immunoglobulin heavy chain (Igh) and immunoglobulin kappa light chain (Igk) loci are the largest multigene loci in the mammalian genome and V(D)J recombination is one of the most complicated genetic processes in the nucleus. The challenge for the appropriate lymphocyte is one of macro-management-to make all of the antigen receptor genes in a particular locus available for recombination at the appropriate developmental time-point. Conversely, these large loci must be kept closed in lymphocytes in which they do not normally recombine, to guard against genomic instability generated by the DNA double strand breaks inherent to the V(D)J recombination process. To manage all of these demanding criteria, V(D)J recombination is regulated at numerous levels. It is restricted to lymphocytes since the Rag genes which control the DNA double-strand break step of recombination are only expressed in these cells. Within the lymphocyte lineage, immunoglobulin recombination is restricted to B-lymphocytes and TCR recombination to T-lymphocytes by regulation of locus accessibility, which occurs at multiple levels. Accessibility of recombination signal sequences (RSSs) flanking individual V, D and J genes at the nucleosomal level is the key micro-management mechanism, which is discussed in greater detail in other chapters. This chapter will explore how the antigen receptor loci are regulated as a whole, focussing on the Igh locus as a paradigm for the mechanisms involved. Numerous recent studies have begun to unravel the complex and complementary processes involved in this large-scale locus organisation. We will examine the structure of the Igh locus and the large-scale and higher-order chromatin remodelling processes associated with V(D)J recombination, at the level of the locus itself, its conformational changes and its dynamic localisation within the nucleus.


Assuntos
Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Cadeias Pesadas de Imunoglobulinas/genética , Alelos , Animais , Linfócitos B/imunologia , Linfócitos B/fisiologia , Cromatina/metabolismo , Cromatina/ultraestrutura , Rearranjo Gênico , Recombinação Genética , Transcrição Gênica
18.
J Exp Med ; 216(8): 1857-1873, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31175140

RESUMO

The generation of protective humoral immunity after vaccination relies on the productive interaction between antigen-specific B cells and T follicular helper (Tfh) cells. Despite the central role of Tfh cells in vaccine responses, there is currently no validated way to enhance their differentiation in humans. From paired human lymph node and blood samples, we identify a population of circulating Tfh cells that are transcriptionally and clonally similar to germinal center Tfh cells. In a clinical trial of vaccine formulations, circulating Tfh cells were expanded in Tanzanian volunteers when an experimental malaria vaccine was adjuvanted in GLA-SE but not when formulated in Alum. The GLA-SE-formulated peptide was associated with an increase in the extrafollicular antibody response, long-lived antibody production, and the emergence of public TCRß clonotypes in circulating Tfh cells. We demonstrate that altering vaccine adjuvants is a rational approach for enhancing Tfh cells in humans, thereby supporting the long-lived humoral immunity that is required for effective vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Composição de Medicamentos/métodos , Glucosídeos/farmacologia , Lipídeo A/farmacologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Vacinação/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Hidróxido de Alumínio/farmacologia , Anticorpos Antivirais/efeitos dos fármacos , Anticorpos Antivirais/imunologia , Antígenos de Protozoários/imunologia , Linfócitos B/imunologia , Células Cultivadas , Feminino , Centro Germinativo/imunologia , Humanos , Imunidade Humoral/imunologia , Vacinas contra Influenza/imunologia , Linfonodos/imunologia , Vacinas Antimaláricas/imunologia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Adulto Jovem
19.
Nat Protoc ; 13(6): 1232-1252, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29725123

RESUMO

For high-throughput sequencing and quantification of immunoglobulin repertoires, most methodologies use RNA. However, output varies enormously between recombined genes due to different promoter strengths and differential activation of lymphocyte subsets, precluding quantitation of recombinants on a per-cell basis. To date, DNA-based approaches have used V gene primer cocktails, with substantial inherent biases. Here, we describe VDJ sequencing (VDJ-seq), which accurately quantitates immunoglobulin diversity at the DNA level in an unbiased manner. This is accomplished with a single primer-extension step using biotinylated J gene primers. By addition of unique molecular identifiers (UMIs) before primer extension, we reliably remove duplicate sequences and correct for sequencing and PCR errors. Furthermore, VDJ-seq captures productive and nonproductive VDJ and DJ recombination events on a per-cell basis. Library preparation takes 3 d, with 2 d of sequencing and 1 d of data processing and analysis.


Assuntos
Genes de Imunoglobulinas , Variação Genética , Imunoglobulinas/genética , Análise de Sequência de DNA/métodos , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos
20.
Genome Biol ; 19(1): 126, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30180872

RESUMO

BACKGROUND: Aging is characterized by loss of function of the adaptive immune system, but the underlying causes are poorly understood. To assess the molecular effects of aging on B cell development, we profiled gene expression and chromatin features genome-wide, including histone modifications and chromosome conformation, in bone marrow pro-B and pre-B cells from young and aged mice. RESULTS: Our analysis reveals that the expression levels of most genes are generally preserved in B cell precursors isolated from aged compared with young mice. Nonetheless, age-specific expression changes are observed at numerous genes, including microRNA encoding genes. Importantly, these changes are underpinned by multi-layered alterations in chromatin structure, including chromatin accessibility, histone modifications, long-range promoter interactions, and nuclear compartmentalization. Previous work has shown that differentiation is linked to changes in promoter-regulatory element interactions. We find that aging in B cell precursors is accompanied by rewiring of such interactions. We identify transcriptional downregulation of components of the insulin-like growth factor signaling pathway, in particular downregulation of Irs1 and upregulation of Let-7 microRNA expression, as a signature of the aged phenotype. These changes in expression are associated with specific alterations in H3K27me3 occupancy, suggesting that Polycomb-mediated repression plays a role in precursor B cell aging. CONCLUSIONS: Changes in chromatin and 3D genome organization play an important role in shaping the altered gene expression profile of aged precursor B cells. Components of the insulin-like growth factor signaling pathways are key targets of epigenetic regulation in aging in bone marrow B cell precursors.


Assuntos
Envelhecimento/genética , Linfócitos B/metabolismo , Cromatina/química , Epigênese Genética , Somatomedinas/fisiologia , Transcriptoma , Envelhecimento/imunologia , Animais , Linfócitos B/imunologia , Regulação para Baixo , Genoma , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Células-Tronco/imunologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA