Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(1): 225-241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38133904

RESUMO

The allopolyploid okra (Abelmoschus esculentus) unveiled telomeric repeats flanking distal gene-rich regions and short interstitial TTTAGGG telomeric repeats, possibly representing hallmarks of chromosomal speciation. Ribosomal RNA (rRNA) genes organize into 5S clusters, distinct from the 18S-5.8S-28S units, indicating an S-type rRNA gene arrangement. The assembly, in line with cytogenetic and cytometry observations, identifies 65 chromosomes and a 1.45 Gb genome size estimate in a haploid sibling. The lack of aberrant meiotic configurations implies limited to no recombination among sub-genomes. k-mer distribution analysis reveals 75% has a diploid nature and 15% heterozygosity. The configurations of Benchmarking Universal Single-Copy Ortholog (BUSCO), k-mer, and repeat clustering point to the presence of at least two sub-genomes one with 30 and the other with 35 chromosomes, indicating the allopolyploid nature of the okra genome. Over 130 000 putative genes, derived from mapped IsoSeq data and transcriptome data from public okra accessions, exhibit a low genetic diversity of one single nucleotide polymorphisms per 2.1 kbp. The genes are predominantly located at the distal chromosome ends, declining toward central scaffold domains. Long terminal repeat retrotransposons prevail in central domains, consistent with the observed pericentromeric heterochromatin and distal euchromatin. Disparities in paralogous gene counts suggest potential sub-genome differentiation implying possible sub-genome dominance. Amino acid query sequences of putative genes facilitated phenol biosynthesis pathway annotation. Comparison with manually curated reference KEGG pathways from related Malvaceae species reveals the genetic basis for putative enzyme coding genes that likely enable metabolic reactions involved in the biosynthesis of dietary and therapeutic compounds in okra.


Assuntos
Abelmoschus , Abelmoschus/genética , Abelmoschus/metabolismo , Genoma , Telômero , Diploide , Variação Genética
2.
Plant Physiol ; 182(1): 378-392, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527088

RESUMO

The life cycle of many organisms includes a quiescent stage, such as bacterial or fungal spores, insect larvae, or plant seeds. Common to these stages is their low water content and high survivability during harsh conditions. Upon rehydration, organisms need to reactivate metabolism and protein synthesis. Plant seeds contain many mRNAs that are transcribed during seed development. Translation of these mRNAs occurs during early seed germination, even before the requirement of transcription. Therefore, stored mRNAs are postulated to be important for germination. How these mRNAs are stored and protected during long-term storage is unknown. The aim of this study was to investigate how mRNAs are stored in dry seeds and whether they are indeed translated during seed germination. We investigated seed polysome profiles and the mRNAs and protein complexes that are associated with these ribosomes in seeds of the model organism Arabidopsis (Arabidopsis thaliana). We showed that most stored mRNAs are associated with monosomes in dry seeds; therefore, we focus on monosomes in this study. Seed ribosome complexes are associated with mRNA-binding proteins, stress granule, and P-body proteins, which suggests regulated packing of seed mRNAs. Interestingly, ∼17% of the mRNAs that are specifically associated with monosomes are translationally up-regulated during seed germination. These mRNAs are transcribed during seed maturation, suggesting a role for this developmental stage in determining the translational fate of mRNAs during early germination.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/fisiologia , RNA Mensageiro Estocado/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/genética , Germinação/fisiologia , RNA Mensageiro/genética , RNA de Plantas/genética , Sementes/fisiologia
3.
Int Arch Allergy Immunol ; 178(1): 19-32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30368491

RESUMO

BACKGROUND: Allergic sensitisation towards cashew nut often happens without a clear history of eating cashew nut. IgE cross-reactivity between cashew and pistachio nut is well described; however, the ability of cashew nut-specific IgE to cross-react to common tree nut species and other Anacardiaceae, like mango, pink peppercorn, or sumac is largely unknown. OBJECTIVES: Cashew nut allergic individuals may cross-react to foods that are phylogenetically related to cashew. We aimed to determine IgE cross-sensitisation and cross-reactivity profiles in cashew nut-sensitised subjects, towards botanically related proteins of other Anacardiaceae family members and related tree nut species. METHOD: Sera from children with a suspected cashew nut allergy (n = 56) were assessed for IgE sensitisation to common tree nuts, mango, pink peppercorn, and sumac using dot blot technique. Allergen cross-reactivity patterns between Anacardiaceae species were subsequently examined by SDS-PAGE and immunoblot inhibition, and IgE-reactive allergens were identified by LC-MS/MS. RESULTS: From the 56 subjects analysed, 36 were positive on dot blot for cashew nut (63%). Of these, 50% were mono-sensitised to cashew nuts, 19% were co-sensitised to Anacardiaceae species, and 31% were co-sensitised to tree nuts. Subjects co-sensitised to Anacardiaceae species displayed a different allergen recognition pattern than subjects sensitised to common tree nuts. In pink peppercorn, putative albumin- and legumin-type seed storage proteins were found to cross-react with serum of cashew nut-sensitised subjects in vitro. In addition, a putative luminal binding protein was identified, which, among others, may be involved in cross-reactivity between several Anacardiaceae species. CONCLUSIONS: Results demonstrate the in vitro presence of IgE cross-sensitisation in children towards multiple Anacardiaceae species. In this study, putative novel allergens were identified in cashew, pistachio, and pink peppercorn, which may pose factors that underlie the observed cross-sensitivity to these species. The clinical relevance of this widespread cross-sensitisation is unknown.


Assuntos
Alérgenos/imunologia , Reações Cruzadas/imunologia , Imunoglobulina E/imunologia , Hipersensibilidade a Noz/imunologia , Nozes/efeitos adversos , Adolescente , Especificidade de Anticorpos/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Hipersensibilidade Imediata/diagnóstico , Hipersensibilidade Imediata/imunologia , Imunização , Masculino , Hipersensibilidade a Noz/diagnóstico
4.
Plant Cell ; 26(1): 195-209, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24464291

RESUMO

The haploid male gametophyte, the pollen grain, is a terminally differentiated structure whose function ends at fertilization. Plant breeding and propagation widely use haploid embryo production from in vitro-cultured male gametophytes, but this technique remains poorly understood at the mechanistic level. Here, we show that histone deacetylases (HDACs) regulate the switch to haploid embryogenesis. Blocking HDAC activity with trichostatin A (TSA) in cultured male gametophytes of Brassica napus leads to a large increase in the proportion of cells that switch from pollen to embryogenic growth. Embryogenic growth is enhanced by, but not dependent on, the high-temperature stress that is normally used to induce haploid embryogenesis in B. napus. The male gametophyte of Arabidopsis thaliana, which is recalcitrant to haploid embryo development in culture, also forms embryogenic cell clusters after TSA treatment. Genetic analysis suggests that the HDAC protein HDA17 plays a role in this process. TSA treatment of male gametophytes is associated with the hyperacetylation of histones H3 and H4. We propose that the totipotency of the male gametophyte is kept in check by an HDAC-dependent mechanism and that the stress treatments used to induce haploid embryo development in culture impinge on this HDAC-dependent pathway.


Assuntos
Arabidopsis/citologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Acetilação , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Histonas/metabolismo , Ácidos Indolacéticos/metabolismo , Pólen/citologia , Pólen/efeitos dos fármacos , Pólen/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 110(24): 10010-5, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716655

RESUMO

The plant immune system is activated by microbial patterns that are detected as nonself molecules. Such patterns are recognized by immune receptors that are cytoplasmic or localized at the plasma membrane. Cell surface receptors are represented by receptor-like kinases (RLKs) that frequently contain extracellular leucine-rich repeats and an intracellular kinase domain for activation of downstream signaling, as well as receptor-like proteins (RLPs) that lack this signaling domain. It is therefore hypothesized that RLKs are required for RLPs to activate downstream signaling. The RLPs Cf-4 and Ve1 of tomato (Solanum lycopersicum) mediate resistance to the fungal pathogens Cladosporium fulvum and Verticillium dahliae, respectively. Despite their importance, the mechanism by which these immune receptors mediate downstream signaling upon recognition of their matching ligand, Avr4 and Ave1, remained enigmatic. Here we show that the tomato ortholog of the Arabidopsis thaliana RLK Suppressor Of BIR1-1/Evershed (SOBIR1/EVR) and its close homolog S. lycopersicum (Sl)SOBIR1-like interact in planta with both Cf-4 and Ve1 and are required for the Cf-4- and Ve1-mediated hypersensitive response and immunity. Tomato SOBIR1/EVR interacts with most of the tested RLPs, but not with the RLKs FLS2, SERK1, SERK3a, BAK1, and CLV1. SOBIR1/EVR is required for stability of the Cf-4 and Ve1 receptors, supporting our observation that these RLPs are present in a complex with SOBIR1/EVR in planta. We show that SOBIR1/EVR is essential for RLP-mediated immunity and propose that the protein functions as a regulatory RLK of this type of cell-surface receptors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Cladosporium/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno , Immunoblotting , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Glicoproteínas de Membrana/genética , Microscopia Confocal , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Interferência de RNA , Receptores de Superfície Celular/genética , Verticillium/fisiologia
6.
J Sci Food Agric ; 96(15): 4984-4993, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26865255

RESUMO

BACKGROUND: Braeburn browning disorder is a storage disease characterised by flesh browning and lens-shaped cavities. The incidence of this postharvest disorder is known to be affected by pre-harvest application of fertilisers and triazole-based fungicides. Recent work has shown that calcium and potassium reduced the incidence of Braeburn browning disorder, while triazoles had the opposite effect. This study addresses the hypothesis of an early proteomic imprint in the apple fruit at harvest induced by the pre-harvest factors applied. If so, this could be used for an early screening of apple fruit at harvest for their postharvest susceptibility to flesh browning. RESULTS: Calcium and triazole had significant effects, while potassium did not. One hundred and thirty protein families were identified, of which 29 were significantly altered after calcium and 63 after triazole treatment. Up-regulation of important antioxidant enzymes was correlated with calcium fertilisation, while triazole induced alterations in the levels of respiration and ethylene biosynthesis related proteins. CONCLUSION: Pre-harvest fertiliser and fungicide application had considerable effects on the apple proteome at harvest. These changes, together with the applied storage conditions will determine whether or not BBD develops. © 2016 Society of Chemical Industry.


Assuntos
Cálcio/administração & dosagem , Frutas/efeitos dos fármacos , Malus/química , Potássio/administração & dosagem , Proteoma/efeitos dos fármacos , Triazóis/administração & dosagem , Antioxidantes , Etilenos/biossíntese , Fertilizantes , Conservação de Alimentos/métodos , Armazenamento de Alimentos/métodos , Frutas/química , Fungicidas Industriais/administração & dosagem , Reação de Maillard/efeitos dos fármacos , Proteínas de Plantas/análise
7.
Mol Plant Microbe Interact ; 28(9): 1032-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26011556

RESUMO

L-type lectin receptor kinases (LecRK) are potential immune receptors. Here, we characterized two closely-related Arabidopsis LecRK, LecRK-IX.1 and LecRK-IX.2, of which T-DNA insertion mutants showed compromised resistance to Phytophthora brassicae and Phytophthora capsici, with double mutants showing additive susceptibility. Overexpression of LecRK-IX.1 or LecRK-IX.2 in Arabidopsis and transient expression in Nicotiana benthamiana increased Phytophthora resistance but also induced cell death. Phytophthora resistance required both the lectin domain and kinase activity, but for cell death, the lectin domain was not needed. Silencing of the two closely related mitogen-activated protein kinase genes NbSIPK and NbNTF4 in N. benthamiana completely abolished LecRK-IX.1-induced cell death but not Phytophthora resistance. Liquid chromatography-mass spectrometry analysis of protein complexes coimmunoprecipitated in planta with LecRK-IX.1 or LecRK-IX.2 as bait, resulted in the identification of the N. benthamiana ABC transporter NbPDR1 as a potential interactor of both LecRK. The closest homolog of NbPDR1 in Arabidopsis is ABCG40, and coimmunoprecipitation experiments showed that ABCG40 associates with LecRK-IX.1 and LecRK-IX.2 in planta. Similar to the LecRK mutants, ABCG40 mutants showed compromised Phytophthora resistance. This study shows that LecRK-IX.1 and LecRK-IX.2 are Phytophthora resistance components that function independent of each other and independent of the cell-death phenotype. They both interact with the same ABC transporter, suggesting that they exploit similar signal transduction pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Morte Celular/fisiologia , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética
8.
Fungal Genet Biol ; 79: 42-53, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26092789

RESUMO

Zymoseptoria tritici is an economically important pathogen of wheat. However, the molecular basis of pathogenicity on wheat is still poorly understood. Here, we present a global survey of the proteins secreted by this fungus in the apoplast of resistant (cv. Shafir) and susceptible (cv. Obelisk) wheat cultivars after inoculation with reference Z. tritici strain IPO323. The fungal proteins present in apoplastic fluids were analyzed by gel electrophoresis and by data-independent acquisition liquid chromatography/mass spectrometry (LC/MS(E)) combined with data-dependent acquisition LC-MS/MS. Subsequent mapping mass spectrometry-derived peptide sequence data against the genome sequence of strain IPO323 identified 665 peptides in the MS(E) and 93 in the LC-MS/MS mode that matched to 85 proteins. The identified fungal proteins, including cell-wall degrading enzymes and proteases, might function in pathogenicity, but the functions of many remain unknown. Most fungal proteins accumulated in cv. Obelisk at the onset of necrotrophy. This inventory provides an excellent basis for future detailed studies on the role of these genes and their encoded proteins during pathogenesis in wheat.


Assuntos
Ascomicetos/química , Proteínas Fúngicas/análise , Doenças das Plantas/microbiologia , Proteoma/análise , Triticum/microbiologia , Ascomicetos/isolamento & purificação , Cromatografia Líquida , Eletroforese , Espectrometria de Massas , Espectrometria de Massas em Tandem
9.
Fungal Genet Biol ; 79: 54-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26092790

RESUMO

Culture filtrates (CFs) of the fungal wheat pathogen Zymoseptoria tritici were assayed for necrosis-inducing activity after infiltration in leaves of various wheat cultivars. Active fractions were partially purified and characterized. The necrosis-inducing factors in CFs are proteinaceous, heat stable and their necrosis-inducing activity is temperature and light dependent. The in planta activity of CFs was tested by a time series of proteinase K (PK) co-infiltrations, which was unable to affect activity 30min after CF infiltrations. This suggests that the necrosis inducing proteins (NIPs) are either absent from the apoplast and likely actively transported into mesophyll cells or protected from the protease by association with a receptor. Alternatively, plant cell death signaling pathways might be fully engaged during the first 30min and cannot be reversed even after PK treatment. Further fractionation of the CFs with the highest necrosis-inducing activity involved fast performance liquid chromatography, SDS-PAGE and mass spectrometry. This revealed that most of the proteins present in the fractions have not been described before. The two most prominent ZtNIP encoding candidates were heterologously expressed in Pichia pastoris and subsequent infiltration assays showed their differential activity in a range of wheat cultivars.


Assuntos
Ascomicetos/química , Proteínas Fúngicas/análise , Necrose/microbiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Fatores de Virulência/análise , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/química , Luz , Espectrometria de Massas , Estabilidade Proteica , Temperatura , Fatores de Virulência/química
10.
Proc Natl Acad Sci U S A ; 109(25): 10119-24, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675118

RESUMO

Plants lack the seemingly unlimited receptor diversity of a somatic adaptive immune system as found in vertebrates and rely on only a relatively small set of innate immune receptors to resist a myriad of pathogens. Here, we show that disease-resistant tomato plants use an efficient mechanism to leverage the limited nonself recognition capacity of their innate immune system. We found that the extracellular plant immune receptor protein Cf-2 of the red currant tomato (Solanum pimpinellifolium) has acquired dual resistance specificity by sensing perturbations in a common virulence target of two independently evolved effectors of a fungus and a nematode. The Cf-2 protein, originally identified as a monospecific immune receptor for the leaf mold fungus Cladosporium fulvum, also mediates disease resistance to the root parasitic nematode Globodera rostochiensis pathotype Ro1-Mierenbos. The Cf-2-mediated dual resistance is triggered by effector-induced perturbations of the apoplastic Rcr3(pim) protein of S. pimpinellifolium. Binding of the venom allergen-like effector protein Gr-VAP1 of G. rostochiensis to Rcr3(pim) perturbs the active site of this papain-like cysteine protease. In the absence of the Cf-2 receptor, Rcr3(pim) increases the susceptibility of tomato plants to G. rostochiensis, thus showing its role as a virulence target of these nematodes. Furthermore, both nematode infection and transient expression of Gr-VAP1 in tomato plants harboring Cf-2 and Rcr3(pim) trigger a defense-related programmed cell death in plant cells. Our data demonstrate that monitoring host proteins targeted by multiple pathogens broadens the spectrum of disease resistances mediated by single plant immune receptors.


Assuntos
Cladosporium/patogenicidade , Nematoides/patogenicidade , Doenças das Plantas/imunologia , Receptores Imunológicos/fisiologia , Solanum lycopersicum/imunologia , Animais , Dados de Sequência Molecular , Virulência
11.
Microb Cell Fact ; 13: 11, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24438100

RESUMO

BACKGROUND: Aspergillus terreus is a natural producer of itaconic acid and is currently used to produce itaconic acid on an industrial scale. The metabolic process for itaconic acid biosynthesis is very similar to the production of citric acid in Aspergillus niger. However, a key enzyme in A. niger, cis-aconitate decarboxylase, is missing. The introduction of the A. terreus cadA gene in A. niger exploits the high level of citric acid production (over 200 g per liter) and theoretically can lead to production levels of over 135 g per liter of itaconic acid in A. niger. Given the potential for higher production levels in A. niger, production of itaconic acid in this host was investigated. RESULTS: Expression of Aspergillus terreus cis-aconitate decarboxylase in Aspergillus niger resulted in the production of a low concentration (0.05 g/L) of itaconic acid. Overexpression of codon-optimized genes for cis-aconitate decarboxylase, a mitochondrial transporter and a plasma membrane transporter in an oxaloacetate hydrolase and glucose oxidase deficient A. niger strain led to highly increased yields and itaconic acid production titers. At these higher production titers, the effect of the mitochondrial and plasma membrane transporters was much more pronounced, with levels being 5-8 times higher than previously described. CONCLUSIONS: Itaconic acid can be produced in A. niger by the introduction of the A. terreus cis-aconitate decarboxylase encoding cadA gene. This results in a low itaconic acid production level, which can be increased by codon-optimization of the cadA gene for A. niger. A second crucial requirement for efficient production of itaconic acid is the expression of the A. terreus mttA gene, encoding a putative mitochondrial transporter. Expression of this transporter results in a twenty-fold increase in the secretion of itaconic acid. Expression of the A. terreus itaconic acid cluster consisting of the cadA gene, the mttA gene and the mfsA gene results in A. niger strains that produce over twenty five-fold higher levels of itaconic acid and show a twenty-fold increase in yield compared to a strain expressing only CadA.


Assuntos
Aspergillus niger/genética , Aspergillus niger/metabolismo , Aspergillus/genética , Carboxiliases/metabolismo , Proteínas Fúngicas/metabolismo , Succinatos/metabolismo , Reatores Biológicos , Carboxiliases/genética , Ácido Cítrico/metabolismo , Clonagem Molecular , Variações do Número de Cópias de DNA , Proteínas Fúngicas/genética , Hidrolases/genética , Hidrolases/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica
12.
Plant Physiol ; 159(4): 1819-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22649272

RESUMO

Cf proteins are receptor-like proteins (RLPs) that mediate resistance of tomato (Solanum lycopersicum) to the foliar pathogen Cladosporium fulvum. These transmembrane immune receptors, which carry extracellular leucine-rich repeats that are subjected to posttranslational glycosylation, perceive effectors of the pathogen and trigger a defense response that results in plant resistance. To identify proteins required for the functionality of these RLPs, we performed immunopurification of a functional Cf-4-enhanced green fluorescent protein fusion protein transiently expressed in Nicotiana benthamiana, followed by mass spectrometry. The endoplasmic reticulum (ER) heat shock protein70 binding proteins (BiPs) and lectin-type calreticulins (CRTs), which are chaperones involved in ER-quality control, were copurifying with Cf-4-enhanced green fluorescent protein. The tomato and N. benthamiana genomes encode four BiP homologs and silencing experiments revealed that these BiPs are important for overall plant viability. For the three tomato CRTs, virus-induced gene silencing targeting the plant-specific CRT3a gene resulted in a significantly compromised Cf-4-mediated defense response and loss of full resistance to C. fulvum. We show that upon knockdown of CRT3a the Cf-4 protein accumulated, but the pool of Cf-4 protein carrying complex-type N-linked glycans was largely reduced. Together, our study on proteins required for Cf function reveals an important role for the CRT ER chaperone CRT3a in the biogenesis and functionality of this type of RLP involved in plant defense.


Assuntos
Resistência à Doença , Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/biossíntese , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Sequência de Aminoácidos , Cladosporium/fisiologia , Inativação Gênica , Glicosilação , Proteínas de Fluorescência Verde/isolamento & purificação , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Transformação Genética
13.
Proteomics ; 12(7): 1024-38, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22522809

RESUMO

Cytosolic ribosomes are among the largest multisubunit cellular complexes. Arabidopsis thaliana ribosomes consist of 79 different ribosomal proteins (r-proteins) that each are encoded by two to six (paralogous) genes. It is unknown whether the paralogs are incorporated into the ribosome and whether the relative incorporation of r-protein paralogs varies in response to environmental cues. Immunopurified ribosomes were isolated from A. thaliana rosette leaves fed with sucrose. Trypsin digested samples were analyzed by qTOF-LC-MS using both MS(E) and classical MS/MS. Peptide features obtained by using these two methods were identified using MASCOT and Proteinlynx Global Server searching the theoretical sequences of A. thaliana proteins. The A. thaliana genome encodes 237 r-proteins and 69% of these were identified with proteotypic peptides for most of the identified proteins. These r-proteins were identified with average protein sequence coverage of 32% observed by MS(E) . Interestingly, the analysis shows that the abundance of r-protein paralogs in the ribosome changes in response to sucrose feeding. This is particularly evident for paralogous RPS3aA, RPS5A, RPL8B, and RACK1 proteins. These results show that protein synthesis in the A. thaliana cytosol involves a heterogeneous ribosomal population. The implications of these findings in the regulation of translation are discussed.


Assuntos
Proteínas de Arabidopsis/análise , Arabidopsis/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteínas Ribossômicas/análise , Sacarose/farmacologia , Sequência de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Análise de Componente Principal , Proteômica , RNA de Plantas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Sacarose/metabolismo , Espectrometria de Massas em Tandem
14.
Transgenic Res ; 20(5): 1033-42, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21188635

RESUMO

ER resident glycoproteins, including ectopically expressed recombinant glycoproteins, carry so-called high-mannose type N-glycans, which can be at different stages of processing. The presence of heterogeneous high-mannose type glycans on ER-retained therapeutic proteins is undesirable for specific therapeutic applications. Previously, we described an Arabidopsis alg3-2 glycosylation mutant in which aberrant Man(5)GlcNAc(2) mannose type N-glycans are transferred to proteins. Here we show that the alg3-2 mutation reduces the N-glycan heterogeneity on ER resident glycoproteins in seeds. We compared the properties of a scFv-Fc, with a KDEL ER retention tag (MBP10) that was expressed in seeds of wild type and alg3-2 plants. N-glycans on these antibodies from mutant seeds were predominantly of the intermediate Man(5)GlcNAc(2) compared to Man(8)GlcNAc(2) and Man(7)GlcNAc(2) isoforms on MBP10 from wild-type seeds. The presence of aberrant N-glycans on MBP10 did not seem to affect MBP10 dimerisation nor binding of MBP10 to its antigen. In alg3-2 the fraction of underglycosylated MBP10 protein forms was higher than in wild type. Interestingly, the expression of MBP10 resulted also in underglycosylation of other, endogenous glycoproteins.


Assuntos
Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/metabolismo , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/imunologia , Arabidopsis/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Glicosilação , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/imunologia , Proteínas Ligantes de Maltose/metabolismo , Manose/genética , Manose/metabolismo , Mutação , Plantas Geneticamente Modificadas/genética , Polissacarídeos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Sementes/genética , Sementes/metabolismo , Anticorpos de Cadeia Única/genética
15.
Front Plant Sci ; 12: 735719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603360

RESUMO

Over the past decade, ample transcriptome data have been generated at different stages during seed germination; however, far less is known about protein synthesis during this important physiological process. Generally, the correlation between transcript levels and protein abundance is low, which strongly limits the use of transcriptome data to accurately estimate protein expression. Polysomal profiling has emerged as a tool to identify mRNAs that are actively translated. The association of the mRNA to the polysome, also referred to as translatome, provides a proxy for mRNA translation. In this study, the correlation between the changes in total mRNA, polysome-associated mRNA, and protein levels across seed germination was investigated. The direct correlation between polysomal mRNA and protein abundance at a single time-point during seed germination is low. However, once the polysomal mRNA of a time-point is compared to the proteome of the next time-point, the correlation is much higher. 35% of the investigated proteome has delayed changes at the protein level. Genes have been classified based on their delayed protein changes, and specific motifs in these genes have been identified. Moreover, mRNA and protein stability and mRNA length have been found as important predictors for changes in protein abundance. In conclusion, polysome association and/or dissociation predicts future changes in protein abundance in germinating seeds.

16.
Microbiol Resour Announc ; 9(23)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499356

RESUMO

The genomes of three Golubevia isolates (BC0812, BC0850, and BC0902) that have been shown to reduce conidiation of Blumeria graminis f. sp. tritici were sequenced using a dual-platform approach. The assembled genomes will help to elucidate the molecular mechanisms underlying the biocontrol effect of this understudied group.

17.
BMC Plant Biol ; 9: 24, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19257882

RESUMO

BACKGROUND: Bet v 1 is an important cause of hay fever in northern Europe. Bet v 1 isoforms from the European white birch (Betula pendula) have been investigated extensively, but the allergenic potency of other birch species is unknown. The presence of Bet v 1 and closely related PR-10 genes in the genome was established by amplification and sequencing of alleles from eight birch species that represent the four subgenera within the genus Betula. Q-TOF LC-MSE was applied to identify which PR-10/Bet v 1 genes are actually expressed in pollen and to determine the relative abundances of individual isoforms in the pollen proteome. RESULTS: All examined birch species contained several PR-10 genes. In total, 134 unique sequences were recovered. Sequences were attributed to different genes or pseudogenes that were, in turn, ordered into seven subfamilies. Five subfamilies were common to all birch species. Genes of two subfamilies were expressed in pollen, while each birch species expressed a mixture of isoforms with at least four different isoforms. Isoforms that were similar to isoforms with a high IgE-reactivity (Bet v 1a = PR-10.01A01) were abundant in all species except B. lenta, while the hypoallergenic isoform Bet v 1d (= PR-10.01B01) was only found in B. pendula and its closest relatives. CONCLUSION: Q-TOF LC-MSE allows efficient screening of Bet v 1 isoforms by determining the presence and relative abundance of these isoforms in pollen. B. pendula contains a Bet v 1-mixture in which isoforms with a high and low IgE-reactivity are both abundant. With the possible exception of B. lenta, isoforms identical or very similar to those with a high IgE-reactivity were found in the pollen proteome of all examined birch species. Consequently, these species are also predicted to be allergenic with regard to Bet v 1 related allergies.


Assuntos
Alérgenos/genética , Antígenos de Plantas/genética , Betula/genética , Proteínas de Plantas/genética , Pólen/genética , Alérgenos/imunologia , Sequência de Aminoácidos , Antígenos de Plantas/imunologia , Betula/imunologia , Clonagem Molecular , DNA de Plantas/genética , Genes de Plantas , Genômica , Imunoglobulina E/imunologia , Dados de Sequência Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/imunologia , Pólen/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Proteômica , Alinhamento de Sequência
18.
J Sep Sci ; 32(8): 1216-23, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19301324

RESUMO

A nontargeted protein identification method was developed to screen for adulterations in skimmed-milk powder (SMP). There are indications of falsified SMP content due to the addition of plant proteins. To demonstrate the reliability and accuracy of the developed comparative LC-MS method using a quadrupole TOF MS instrument, adulterated SMP samples were prepared by the addition of protein isolates of soy and pea to skimmed-milk before pasteurisation and evaporation. The comparative LC-MS approach enabled unequivocal discrimination of those SMP samples containing soy and pea protein from nonadulterated SMP. To identify the source of (plant) proteins present in the adulterated SMP, data-dependent LC-MS/MS was used in combination with an include list of differential peptides. Numerous peptides originating from the major seed proteins of soy (glycinin, beta-conglycin) and pea (legumin, vicilin) could be identified in this way.


Assuntos
Cromatografia Líquida/métodos , Análise de Alimentos , Contaminação de Alimentos/análise , Espectrometria de Massas/métodos , Leite/química , Peptídeos/análise , Pós/química , Animais , Cromatografia Líquida/instrumentação , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Espectrometria de Massas/instrumentação , Dados de Sequência Molecular , Pisum sativum/química , Peptídeos/genética , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Glycine max/química
19.
Proteomics ; 8(4): 731-49, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18297651

RESUMO

Quantitative proteomics approaches using stable isotopes are well-known and used in many labs nowadays. More recently, high resolution quantitative approaches are reported that rely on LC-MS quantitation of peptide concentrations by comparing peak intensities between multiple runs obtained by continuous detection in MS mode. Characteristic of these comparative LC-MS procedures is that they do not rely on the use of stable isotopes; therefore the procedure is often referred to as label-free LC-MS. In order to compare at comprehensive scale peak intensity data in multiple LC-MS datasets, dedicated software is required for detection, matching and alignment of peaks. The high accuracy in quantitative determination of peptide abundance provides an impressive level of detail. This approach also requires an experimental set-up where quantitative aspects of protein extraction and reproducible separation conditions need to be well controlled. In this paper we will provide insight in the critical parameters that affect the quality of the results and list an overview of the most recent software packages that are available for this procedure.


Assuntos
Cromatografia Líquida/métodos , Fragmentos de Peptídeos/isolamento & purificação , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Biomarcadores/análise , Fragmentos de Peptídeos/análise , Análise de Componente Principal , Software
20.
Mol Nutr Food Res ; 51(12): 1527-36, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17979095

RESUMO

Birch pollen allergy is predominantly caused by the major allergen Bet v 1 and can lead to crossreactions with homologous proteins in food. Two major cross-reactive food allergens are Dau c 1 from carrot and Api g 1 from celery, which have never been purified from their natural source. Here, we describe a non-denaturing purification method for obtaining natural Bet v 1, Dau c 1 and Api g 1, comprising of ammonium sulfate precipitation, hydrophobic interaction chromatography and size exclusion chromatography. This method resulted in 98-99% pure isoform mixtures for each allergen. Characterization of these isoform mixtures with Q-TOF MS/MS clearly showed earlier reported isoforms of Bet v 1, Dau c 1 and Api g 1, but also new isoforms. The presence of secondary structure in the three purified allergens was demonstrated via circular dichroism and showed high similarity. The immune reactivity of the natural allergens was compared with recombinant proteins by Western blot and ELISA and showed similar reactivity.


Assuntos
Alérgenos/isolamento & purificação , Antígenos de Plantas/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Pólen/química , Alérgenos/química , Alérgenos/metabolismo , Sequência de Aminoácidos , Antígenos de Plantas/química , Antígenos de Plantas/metabolismo , Apium/química , Betula/química , Western Blotting , Dicroísmo Circular , Daucus carota/química , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/química , Estrutura Secundária de Proteína , Alinhamento de Sequência , Espectrometria de Massas em Tandem , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA