RESUMO
BACKGROUND: Endobronchial path selection is important for the bronchoscopic diagnosis of focal lung lesions. Path selection typically involves mentally reconstructing a three-dimensional path by interpreting a stack of two-dimensional (2D) axial plane CT scan sections. The hypotheses of our study about path selection were as follows: (1) bronchoscopists are inaccurate and overly confident when making endobronchial path selections based on 2D CT scan analysis; and (2) path selection accuracy and confidence improve and become better aligned when bronchoscopists employ path-planning methods based on virtual bronchoscopy (VB). METHODS: Studies of endobronchial path selection comparing three path-planning methods (ie, the standard 2D CT scan analysis and two new VB-based techniques) were performed. The task was to navigate to discrete lesions located between the third-order and fifth-order bronchi of the right upper and middle lobes. Outcome measures were the cumulative accuracy of making four sequential path selection decisions and self-reported confidence (1, least confident; 5, most confident). Both experienced and inexperienced bronchoscopists participated in the studies. RESULTS: In the first study involving a static paper-based tool, the mean (+/- SD) cumulative accuracy was 14 +/- 3% using 2D CT scan analysis (confidence, 3.4 +/- 1.3) and 49 +/- 15% using a VB-based technique (confidence, 4.2 +/- 1.1; p = 0.0001 across all comparisons). For a second study using an interactive computer-based tool, the mean accuracy was 40 +/- 28% using 2D CT scan analysis (confidence, 3.0 +/- 0.3) and 96 +/- 3% using a dynamic VB-based technique (confidence, 4.6 +/- 0.2). Regardless of the experience level of the bronchoscopist, use of the standard 2D CT scan analysis resulted in poor path selection accuracy and misaligned confidence. Use of the VB-based techniques resulted in considerably higher accuracy and better aligned decision confidence. CONCLUSIONS: Endobronchial path selection is a source of error in the bronchoscopy workflow. The use of VB-based path-planning techniques significantly improves path selection accuracy over use of the standard 2D CT scan section analysis in this simulation format.
Assuntos
Brônquios/patologia , Broncoscopia/métodos , Simulação por Computador , Variações Dependentes do Observador , Broncografia , Humanos , Imageamento Tridimensional , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Software , Tomografia Computadorizada por Raios X , Interface Usuário-ComputadorRESUMO
BACKGROUND: Ultrathin bronchoscopy guided by virtual bronchoscopy (VB) techniques show promise for the diagnosis of peripheral lung lesions. In a phantom study, we evaluated a new real-time, VB-based, image-guided system for guiding the bronchoscopic biopsy of peripheral lung lesions and compared its performance to that of standard bronchoscopy practice. METHODS: Twelve bronchoscopists of varying experience levels participated in the study. The task was to use an ultrathin bronchoscope and a biopsy forceps to localize 10 synthetically created lesions situated at varying airway depths. For route planning and guidance, the bronchoscopists employed either standard bronchoscopy practice or the real-time image-guided system. Outcome measures were biopsy site position error, which was defined as the distance from the forceps contact point to the ground-truth lesion boundary, and localization success, which was defined as a site identification having a biopsy site position error of < or = 5 mm. RESULTS: Mean (+/- SD) localization success more than doubled from 43 +/- 16% using standard practice to 94 +/- 7.9% using image guidance (p < 10(-15) [McNemar paired test]). The mean biopsy site position error dropped from 9.7 +/- 9.1 mm for standard practice to 2.2 +/- 2.3 mm for image guidance. For standard practice, localization success decreased from 56% for generation 3 to 4 lesions to 31% for generation 6 to 8 lesions and also decreased from 51% for lesions on a carina vs 23% for lesions situated away from a carina. These factors were far less pronounced when using image guidance, as follows: success for generation 3 to 4 lesions, 97%; success for generation 6 to 8 lesions, 91%; success for lesions on a carina, 98%; success for lesions away from a carina, 86%. Bronchoscopist experience did not significantly affect performance using the image-guided system. CONCLUSIONS: Real-time, VB-based image guidance can potentially far exceed standard bronchoscopy practice for enabling the bronchoscopic biopsy of peripheral lung lesions.
Assuntos
Broncoscopia/métodos , Pneumopatias/diagnóstico , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Biópsia/métodos , Desenho de Equipamento , Humanos , Reprodutibilidade dos TestesRESUMO
With the development of multidetector computed-tomography (MDCT) scanners and ultrathin bronchoscopes, the use of bronchoscopy for diagnosing peripheral lung-cancer nodules is becoming a viable option. The work flow for assessing lung cancer consists of two phases: 1) 3-D MDCT analysis and 2) live bronchoscopy. Unfortunately, the yield rates for peripheral bronchoscopy have been reported to be as low as 14%, and bronchoscopy performance varies considerably between physicians. Recently, proposed image-guided systems have shown promise for assisting with peripheral bronchoscopy. Yet, MDCT-based route planning to target sites has relied on tedious error-prone techniques. In addition, route planning tends not to incorporate known anatomical, device, and procedural constraints that impact a feasible route. Finally, existing systems do not effectively integrate MDCT-derived route information into the live guidance process. We propose a system that incorporates an automatic optimal route-planning method, which integrates known route constraints. Furthermore, our system offers a natural translation of the MDCT-based route plan into the live guidance strategy via MDCT/video data fusion. An image-based study demonstrates the route-planning method's functionality. Next, we present a prospective lung-cancer patient study in which our system achieved a successful navigation rate of 91% to target sites. Furthermore, when compared to a competing commercial system, our system enabled bronchoscopy over two airways deeper into the airway-tree periphery with a sample time that was nearly 2 min shorter on average. Finally, our system's ability to almost perfectly predict the depth of a bronchoscope's navigable route in advance represents a substantial benefit of optimal route planning.
Assuntos
Broncoscopia/métodos , Processamento de Imagem Assistida por Computador/métodos , Radiografia Torácica/métodos , Cirurgia Assistida por Computador/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Gravação em Vídeo , Adulto JovemRESUMO
A vital task in the planning of peripheral bronchoscopy is the segmentation of the airway tree from a 3-D multidetector computed tomography chest scan. Unfortunately, existing methods typically do not sufficiently extract the necessary peripheral airways needed to plan a procedure. We present a robust method that draws upon both local and global information. The method begins with a conservative segmentation of the major airways. Follow-on stages then exhaustively search for additional candidate airway locations. Finally, a graph-based optimization method counterbalances both the benefit and cost of retaining candidate airway locations for the final segmentation. Results demonstrate that the proposed method typically extracts 2-3 more generations of airways than several other methods, and that the extracted airway trees enable image-guided bronchoscopy deeper into the human lung periphery than past studies.