Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Trends Immunol ; 41(6): 531-544, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32303452

RESUMO

Neutrophil death can transpire via diverse pathways and is regulated by interactions with commensal and pathogenic microorganisms, environmental exposures, and cell age. At steady state, neutrophil turnover and replenishment are continually maintained via a delicate balance between host-mediated responses and microbial forces. Disruptions in this equilibrium directly impact neutrophil numbers in circulation, cell trafficking, antimicrobial defenses, and host well-being. How neutrophils meet their end is physiologically important and can result in different immunologic consequences. Whereas nonlytic forms of neutrophil death typically elicit anti-inflammatory responses and promote healing, pathways ending with cell membrane rupture may incite deleterious proinflammatory responses, which can exacerbate local tissue injury, lead to chronic inflammation, or precipitate autoimmunity. This review seeks to provide a contemporary analysis of mechanisms of neutrophil death.


Assuntos
Apoptose , Neutrófilos , Animais , Humanos , Inflamação/imunologia , Neutrófilos/citologia , Neutrófilos/imunologia
2.
FASEB J ; 35(4): e21211, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710641

RESUMO

Organization of G protein-coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand activation is crucial in orchestrating their signaling. Here, we have compared the membrane organization and downstream signaling of a mutant (R108A, R3.50A) of the adenosine A3 receptor (A3 AR) to that of the wild-type receptor. Fluorescence Correlation Spectroscopy (FCS) studies with a fluorescent agonist (ABEA-X-BY630) demonstrated that both wild-type and mutant receptors bind agonist with high affinity but in subsequent downstream signaling assays the R108A mutation abolished agonist-mediated inhibition of cAMP production and ERK phosphorylation. In further FCS studies, both A3 AR and A3 AR R108A underwent similar agonist-induced increases in receptor density and molecular brightness which were accompanied by a decrease in membrane diffusion after agonist treatment. Using bimolecular fluorescence complementation, experiments showed that the R108A mutant retained the ability to recruit ß-arrestin and these receptor/arrestin complexes displayed similar membrane diffusion and organization to that observed with wild-type receptors. These data demonstrate that effective G protein signaling is not a prerequisite for agonist-stimulated ß-arrestin recruitment and membrane reorganization of the A3 AR.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Adenosina/análogos & derivados , Compostos de Boro/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Receptor A3 de Adenosina/metabolismo , Adenosina/farmacologia , Animais , Arrestina/metabolismo , Células CHO , Cricetulus , Regulação da Expressão Gênica/efeitos dos fármacos , Mutação , Ligação Proteica , Receptor A3 de Adenosina/genética
3.
PLoS Biol ; 17(11): e3000434, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31765370

RESUMO

G protein-coupled receptors (GPCRs) are the most widely targeted gene family for Food and Drug Administration (FDA)-approved drugs. To assess possible roles for GPCRs in cancer, we analyzed The Cancer Genome Atlas (TCGA) data for mRNA expression, mutations, and copy number variation (CNV) in 20 categories and 45 subtypes of solid tumors and quantified differential expression (DE) of GPCRs by comparing tumors against normal tissue from the Gene Tissue Expression Project (GTEx) database. GPCRs are overrepresented among coding genes with elevated expression in solid tumors. This analysis reveals that most tumor types differentially express >50 GPCRs, including many targets for approved drugs, hitherto largely unrecognized as targets of interest in cancer. GPCR mRNA signatures characterize specific tumor types and correlate with expression of cancer-related pathways. Tumor GPCR mRNA signatures have prognostic relevance for survival and correlate with expression of numerous cancer-related genes and pathways. GPCR expression in tumors is largely independent of staging, grading, metastasis, and/or driver mutations. GPCRs expressed in cancer cell lines largely parallel GPCR expression in tumors. Certain GPCRs are frequently mutated and appear to be hotspots, serving as bellwethers of accumulated genomic damage. CNV of GPCRs is common but does not generally correlate with mRNA expression. Our results suggest a previously underappreciated role for GPCRs in cancer, perhaps as functional oncogenes, biomarkers, surface antigens, and pharmacological targets.


Assuntos
Neoplasias/genética , Receptores Acoplados a Proteínas G/genética , Variações do Número de Cópias de DNA , Dosagem de Genes , Genômica , Mutação , Taxa de Mutação , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia
4.
Am J Physiol Cell Physiol ; 318(1): C205-C214, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31664858

RESUMO

E-cigarettes are portrayed as safer relative to conventional tobacco. However, burgeoning evidence suggests that E-cigarettes may adversely affect host defenses. However, the precise mechanisms by which E-cigarette vapor alters innate immune cell function have not been fully elucidated. We determined the effects of E-cigarette exposure on the function and responses to infectious challenge of the most abundant innate immune cell, the neutrophil, using isolated human neutrophils and a mouse model of gram-negative infection. Our results revealed that human neutrophils exposed to E-cigarette vapor had 4.2-fold reductions in chemotaxis toward the bacterial cell-well component f-Met-Leu-Phe (P < 0.001). F-actin polarization and membrane fluidity were also adversely affected by E-cigarette vapor exposure. E-cigarette-exposed human neutrophils exhibited a 48% reduction in production of reactive oxygen species (ROS; P < 0.001). Given the central role of ROS in neutrophil extracellular trap (NET) production, NET production was quantified, and E-cigarette vapor exposure was found to reduce NETosis by 3.5-fold (P < 0.01); formulations with and without nicotine containing propylene glycol exhibiting significant suppressive effects. However, noncanonical NETosis was unaffected. In addition, exposure to E-cigarette vapor lowered the rate of phagocytosis of bacterial bioparticles by 47% (P < 0.05). In our physiological mouse model of chronic E-cigarette exposure and sepsis, E-cigarette vapor inhalation led to reduced neutrophil migration in infected spaces and a higher burden of Pseudomonas. These findings provide evidence that E-cigarette use adversely impacts the innate immune system and may place E-cigarette users at higher risk for dysregulated inflammatory responses and invasive bacterial infections.


Assuntos
Quimiotaxia de Leucócito , Sistemas Eletrônicos de Liberação de Nicotina , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , Fagocitose , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Vaping/efeitos adversos , Animais , Células Cultivadas , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Fluidez de Membrana , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Transdução de Sinais , Vaping/imunologia
5.
Blood ; 129(23): 3100-3110, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28416510

RESUMO

Healthy blood neutrophils are functionally quiescent in the bloodstream, have a short lifespan, and exit the circulation to carry out innate immune functions, or undergo rapid apoptosis and macrophage-mediated clearance to mitigate host tissue damage. Limitation of unnecessary intravascular neutrophil activation is also important to prevent serious inflammatory pathologies. Because neutrophils become easily activated after purification, we carried out ex vivo comparisons with neutrophils maintained in whole blood. We found a difference in activation state, with purified neutrophils showing signs of increased reactivity: shedding of l-selectin, CD11b upregulation, increased oxidative burst, and faster progression to apoptosis. We discovered that erythrocytes suppressed neutrophil activation ex vivo and in vitro, including reduced l-selectin shedding, oxidative burst, chemotaxis, neutrophil extracellular trap formation, bacterial killing, and induction of apoptosis. Selective and specific modification of sialic acid side chains on erythrocyte surfaces with mild sodium metaperiodate oxidation followed by aldehyde quenching with 4-methyl-3-thiosemicarbazide reduced neutrophil binding to erythrocytes and restored neutrophil activation. By enzyme-linked immunosorbent assay and immunofluorescence, we found that glycophorin A, the most abundant sialoglycoprotein on erythrocytes, engaged neutrophil Siglec-9, a sialic acid-recognizing receptor known to dampen innate immune cell activation. These studies demonstrate a previously unsuspected role for erythrocytes in suppressing neutrophils ex vivo and in vitro and help explain why neutrophils become easily activated after separation from whole blood. We propose that a sialic acid-based "self-associated molecular pattern" on erythrocytes also helps maintain neutrophil quiescence in the bloodstream. Our findings may be relevant to some prior experimental and clinical studies of neutrophils.


Assuntos
Antígenos CD/imunologia , Antígenos CD/metabolismo , Eritrócitos/imunologia , Eritrócitos/metabolismo , Glicoforinas/imunologia , Glicoforinas/metabolismo , Ativação de Neutrófilo/imunologia , Ativação de Neutrófilo/fisiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Apoptose , Atividade Bactericida do Sangue , Antígeno CD11b/sangue , Separação Celular , Humanos , Técnicas In Vitro , Selectina L/sangue , Neutrófilos/citologia
6.
Am J Physiol Cell Physiol ; 315(5): C636-C642, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30088793

RESUMO

Bisphenol A (BPA) is a synthetic, organic compound frequently present in consumer plastics, including plastic-lined cans, water bottles, toys, and teeth sutures. Previous studies have shown that BPA can produce adverse health effects that include defects in reproductive function and altered prenatal/childhood development. However, little is known regarding the effects of BPA on immune function. In this study, we assessed the effect of BPA on human neutrophils, a critical component of the innate immune system's defense against pathogens. We found that BPA induces a concentration-dependent increase in reactive oxygen species (ROS) generation by neutrophils, which is inhibited by the estrogen receptor-ß antagonist PHTPP. Furthermore, incubation with the membrane-permeable calcium chelator BAPTA-AM and/or removal of extracellular calcium inhibited BPA-induced ROS production, indicating that the process is calcium dependent. Transwell chemotaxis assays revealed that BPA exposure reduces the chemotactic capacity of neutrophils in a gradient of the bacterial cell wall component f-Met-Leu-Phe, a potent chemoattractant. Exposure to BPA also inhibits the ability of neutrophils to kill methicillin-resistant Staphylococcus aureus, a leading human pathogen. Our findings reveal that BPA alters the in vitro function of neutrophils, including ROS production, chemotaxis, and bacterial killing, and raises the possibility of altered innate immunity in vivo, especially in those with compromised immune function and who can be exposed to BPA in a wide variety of products.


Assuntos
Compostos Benzidrílicos/imunologia , Imunidade Inata/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/imunologia , Neutrófilos/imunologia , Fenóis/imunologia , Compostos Benzidrílicos/toxicidade , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/imunologia , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Neutrófilos/efeitos dos fármacos , Fenóis/toxicidade , Espécies Reativas de Oxigênio/imunologia
7.
J Antimicrob Chemother ; 73(6): 1586-1594, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514266

RESUMO

Objectives: The role of protease-activated receptor 1 (PAR1) in the pathogenesis of pneumonia and sepsis is ambiguous given the existing literature. As PAR1 is classically activated by the coagulation-based protease thrombin and leads to vascular leakage, our hypothesis was that PAR1 blockade with SCH79797 would be therapeutically beneficial in an experimental model of murine Gram-negative pneumonia. Methods: In this study, we administered SCH79797 via the intrapulmonary route 6 h after the establishment of Escherichia coli pneumonia and observed a significant improvement in survival, lung injury, bacterial clearance and inflammation. We focused on neutrophils as a potential target of the PAR1 antagonist, since they are the predominant inflammatory cell type in the infected lung. Results: Neutrophils appear to express PAR1 at low levels and the PAR1 antagonist SCH79797 enhanced neutrophil killing. Part of this effect may be explained by alterations in the generation of reactive oxygen species (ROS). SCH79797 also led to robust neutrophil extracellular trap (NET) generation and cathelicidin-related antimicrobial peptide (CRAMP) release by neutrophils. Surprisingly, SCH79797 also had a potent, direct antibiotic effect with disruption of the E. coli cell membrane. However, the newer-generation PAR1 antagonist, vorapaxar (SCH530348), had no appreciable effect on neutrophil activity or direct bacterial killing, which suggests the effects seen with SCH79797 may be PAR1 independent. Conclusions: In summary, we observed that intrapulmonary treatment with SCH79797 has significant therapeutic effects in a model of E. coli pneumonia that appear to be due, in part, to both neutrophil-stimulating and direct antibacterial effects of SCH79797.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Neutrófilos/microbiologia , Pneumonia Bacteriana/tratamento farmacológico , Pirróis/farmacologia , Quinazolinas/farmacologia , Animais , Antibacterianos/administração & dosagem , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirróis/administração & dosagem , Quinazolinas/administração & dosagem , Espécies Reativas de Oxigênio/análise , Receptor PAR-1/antagonistas & inibidores
8.
J Biol Chem ; 291(27): 13964-13973, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226531

RESUMO

Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound.


Assuntos
Ácidos Anacárdicos/farmacologia , Anacardium/química , Antibacterianos/farmacologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/efeitos dos fármacos , Humanos , Lisofosfolipídeos/metabolismo , Explosão Respiratória , Esfingosina/análogos & derivados , Esfingosina/metabolismo
9.
J Immunol ; 194(7): 3259-66, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25710915

RESUMO

Helicobacter pylori infection triggers chronic inflammation of the gastric mucosa that may progress to gastric cancer. The hypoxia-inducible factors (HIFs) are the central mediators of cellular adaptation to low oxygen levels (hypoxia), but they have emerged recently as major transcriptional regulators of immunity and inflammation. No studies have investigated whether H. pylori affects HIF signaling in immune cells and a potential role for HIF in H. pylori-mediated gastritis. HIF-1 and HIF-2 expression was examined in human H. pylori-positive gastritis biopsies. Subsequent experiments were performed in naive and polarized bone marrow-derived macrophages from wild-type (WT) and myeloid HIF-1α-null mice (HIF-1(Δmyel)). WT and HIF-1(Δmyel) mice were inoculated with H. pylori by oral gavage and sacrificed 6 mo postinfection. HIF-1 was specifically expressed in macrophages of human H. pylori-positive gastritis biopsies. Macrophage HIF-1 strongly contributed to the induction of proinflammatory genes (IL-6, IL-1ß) and inducible NO synthase in response to H. pylori. HIF-2 expression and markers of M2 macrophage differentiation were decreased in response to H. pylori. HIF-1(Δmyel) mice inoculated with H. pylori for 6 mo presented with a similar bacterial colonization than WT mice but, surprisingly, a global increase of inflammation, leading to a worsening of the gastritis, measured by an increased epithelial cell proliferation. In conclusion, myeloid HIF-1 is protective in H. pylori-mediated gastritis, pointing to the complex counterbalancing roles of innate immune and inflammatory phenotypes in driving this pathology.


Assuntos
Gastrite/etiologia , Gastrite/metabolismo , Infecções por Helicobacter/complicações , Infecções por Helicobacter/metabolismo , Helicobacter pylori , Fator 1 Induzível por Hipóxia/metabolismo , Células Mieloides/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biópsia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Gastrite/patologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Transgênicos , Células Mieloides/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia
11.
J Antimicrob Chemother ; 71(5): 1264-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26832758

RESUMO

OBJECTIVES: The Gram-negative bacillus Stenotrophomonas maltophilia (SM) is an emerging MDR opportunistic pathogen. Recent studies identify a potentially relevant activity of azithromycin against Gram-negative bacteria overlooked in standard bacteriological testing. We investigated azithromycin activity against SM in testing conditions incorporating mammalian tissue culture medium and host defence factors. METHODS: MIC testing, chequerboard assays, time-kill assays and fluorescence microscopy were performed for azithromycin, the cationic peptide antibiotic colistin and the human defence peptide cathelicidin LL-37 alone or in combination in cation-adjusted Mueller-Hinton broth or mammalian tissue culture media. Azithromycin sensitization of SM to host immune clearance was tested in a human neutrophil killing assay and a murine pneumonia model. RESULTS: We observed potent bactericidal activity of azithromycin against SM in mammalian tissue culture medium absent in bacteriological medium. Colistin and LL-37 strongly potentiated azithromycin killing of SM by increasing drug entry. Additionally, azithromycin sensitized SM to neutrophil killing and increased SM clearance in the murine pneumonia model. CONCLUSIONS: Despite lack of activity in standard MIC testing, azithromycin synergizes with cationic peptide antibiotics to kill SM in medium mimicking tissue fluid conditions. Azithromycin, alone or in combination with colistin, merits further exploration in therapy of drug-resistant SM infections.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Azitromicina/farmacologia , Sinergismo Farmacológico , Stenotrophomonas maltophilia/efeitos dos fármacos , Animais , Colistina/farmacologia , Modelos Animais de Doenças , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Neutrófilos/imunologia , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Resultado do Tratamento , Catelicidinas
12.
J Immunol ; 192(12): 5695-702, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24808367

RESUMO

Skin-resident T cells have been shown to play important roles in tissue homeostasis and wound repair, but their role in UV radiation (UVR)-mediated skin injury and subsequent tissue regeneration is less clear. In this study, we demonstrate that acute UVR rapidly activates skin-resident T cells in humans and dendritic epidermal γδ T cells (DETCs) in mice through mechanisms involving the release of ATP from keratinocytes. Following UVR, extracellular ATP leads to an increase in CD69 expression, proliferation, and IL-17 production, and to changes in DETC morphology. Furthermore, we find that the purinergic receptor P2X7 and caspase-1 are necessary for UVR-induced IL-1 production in keratinocytes, which increases IL-17 secretion by DETCs. IL-17, in turn, induces epidermal TNF-related weak inducer of apoptosis and growth arrest and DNA damage-associated gene 45, two molecules linked to the DNA repair response. Finally, we demonstrate that DETCs and human skin-resident T cells limit DNA damage in keratinocytes. Taken together, our findings establish a novel role for skin-resident T cells in the UVR-associated DNA repair response and underscore the importance of skin-resident T cells to overall skin regeneration.


Assuntos
Reparo do DNA/efeitos da radiação , Epiderme/imunologia , Queratinócitos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T/imunologia , Raios Ultravioleta/efeitos adversos , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Reparo do DNA/genética , Reparo do DNA/imunologia , Epiderme/patologia , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Interleucina-17/imunologia , Queratinócitos/patologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Masculino , Camundongos , Camundongos Knockout , Regeneração/genética , Regeneração/imunologia , Regeneração/efeitos da radiação , Linfócitos T/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
13.
Mol Pharmacol ; 88(1): 181-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25737495

RESUMO

G protein-coupled receptors (GPCRs), the largest family of signaling receptors in the human genome, are also the largest class of targets of approved drugs. Are the optimal GPCRs (in terms of efficacy and safety) currently targeted therapeutically? Especially given the large number (∼ 120) of orphan GPCRs (which lack known physiologic agonists), it is likely that previously unrecognized GPCRs, especially orphan receptors, regulate cell function and can be therapeutic targets. Knowledge is limited regarding the diversity and identity of GPCRs that are activated by endogenous ligands and that native cells express. Here, we review approaches to define GPCR expression in tissues and cells and results from studies using these approaches. We identify problems with the available data and suggest future ways to identify and validate the physiologic and therapeutic roles of previously unrecognized GPCRs. We propose that a particularly useful approach to identify functionally important GPCRs with therapeutic potential will be to focus on receptors that show selective increases in expression in diseased cells from patients and experimental animals.


Assuntos
Perfilação da Expressão Gênica/métodos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Distribuição Tecidual
14.
FASEB J ; 28(10): 4211-22, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24970394

RESUMO

In our previous work, using a fluorescent adenosine-A3 receptor (A3AR) agonist and fluorescence correlation spectroscopy (FCS), we demonstrated high-affinity labeling of the active receptor (R*) conformation. In the current study, we used a fluorescent A3AR antagonist (CA200645) to study the binding characteristics of antagonist-occupied inactive receptor (R) conformations in membrane microdomains of individual cells. FCS analysis of CA200645-occupied A3ARs revealed 2 species, τD2 and τD3, that diffused at 2.29 ± 0.35 and 0.09 ± 0.03 µm(2)/s, respectively. FCS analysis of a green fluorescent protein (GFP)-tagged A3AR exhibited a single diffusing species (0.105 µm(2)/s). The binding of CA200645 to τD3 was antagonized by nanomolar concentrations of the A3 antagonist MRS 1220, but not by the agonist NECA (up to 300 nM), consistent with labeling of R. CA200645 normally dissociated slowly from the A3AR, but inclusion of xanthine amine congener (XAC) or VUF 5455 during washout markedly accelerated the reduction in the number of particles exhibiting τD3 characteristics. It is notable that this effect was accompanied by a significant increase in the number of particles with τD2 diffusion. These data show that FCS analysis of ligand-occupied receptors provides a unique means of monitoring ligand A3AR residence times that are significantly reduced as a consequence of allosteric interaction across the dimer interface


Assuntos
Microdomínios da Membrana/metabolismo , Receptor A3 de Adenosina/metabolismo , Antagonistas do Receptor A3 de Adenosina/farmacologia , Regulação Alostérica , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Cinética , Ligação Proteica , Multimerização Proteica
15.
EMBO Rep ; 14(8): 726-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23817552

RESUMO

The A3-adenosine receptor (A3AR) has recently emerged as a key regulator of neutrophil behaviour. Using a fluorescent A3AR ligand, we show that A3ARs aggregate in highly polarized immunomodulatory microdomains on human neutrophil membranes. In addition to regulating chemotaxis, A3ARs promote the formation of filipodia-like projections (cytonemes) that can extend up to 100 µm to tether and 'reel in' pathogens. Exposure to bacteria or an A3AR agonist stimulates the formation of these projections and bacterial phagocytosis, whereas an A3AR-selective antagonist inhibits cytoneme formation. Our results shed new light on the behaviour of neutrophils and identify the A3AR as a potential target for modulating their function.


Assuntos
Estruturas da Membrana Celular/ultraestrutura , Neutrófilos/ultraestrutura , Receptor A3 de Adenosina/metabolismo , Estruturas da Membrana Celular/efeitos dos fármacos , Estruturas da Membrana Celular/metabolismo , Estruturas da Membrana Celular/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Células HL-60 , Interações Hospedeiro-Patógeno , Humanos , Ligantes , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Fagocitose/efeitos dos fármacos , Ligação Proteica , Antagonistas de Receptores Purinérgicos P1/farmacologia
16.
Infect Microbes Dis ; 6(2): 65-73, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38952747

RESUMO

Vitamin A and its biologically active derivative, retinoic acid (RA), are important for many immune processes. RA, in particular, is essential for the development of immune cells, including neutrophils, which serve as a front-line defense against infection. While vitamin A deficiency has been linked to higher susceptibility to infections, the precise role of vitamin A/RA in host-pathogen interactions remains poorly understood. Here, we provided evidence that RA boosts neutrophil killing of methicillin-resistant Staphylococcus aureus (MRSA). RA treatment stimulated primary human neutrophils to produce reactive oxygen species, neutrophil extracellular traps, and the antimicrobial peptide cathelicidin (LL-37). Because RA treatment was insufficient to reduce MRSA burden in an in vivo murine model of skin infection, we expanded our analysis to other infectious agents. RA did not affect the growth of a number of common bacterial pathogens, including MRSA, Escherichia coli K1 and Pseudomonas aeruginosa; however, RA directly inhibited the growth of group A Streptococcus (GAS). This antimicrobial effect, likely in combination with RA-mediated neutrophil boosting, resulted in substantial GAS killing in neutrophil killing assays conducted in the presence of RA. Furthermore, in a murine model of GAS skin infection, topical RA treatment showed therapeutic potential by reducing both skin lesion size and bacterial burden. These findings suggest that RA may hold promise as a therapeutic agent against GAS and perhaps other clinically significant human pathogens.

17.
Purinergic Signal ; 8(3): 587-98, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22528684

RESUMO

The directional movement of cells can be regulated by ATP, certain other nucleotides (e.g., ADP, UTP), and adenosine. Such regulation occurs for cells that are "professional phagocytes" (e.g., neutrophils, macrophages, certain lymphocytes, and microglia) and that undergo directional migration and subsequent phagocytosis. Numerous other cell types (e.g., fibroblasts, endothelial cells, neurons, and keratinocytes) also change motility and migration in response to ATP, other nucleotides, and adenosine. In this article, we review how nucleotides and adenosine modulate chemotaxis and motility and highlight the importance of nucleotide- and adenosine-regulated cell migration in several cell types: neutrophils, microglia, endothelial cells, and cancer cells. We also discuss difficulties in conducting experiments and drawing conclusions regarding the ability of nucleotides and adenosine to modulate the migration of professional and non-professional phagocytes.


Assuntos
Adenosina/fisiologia , Quimiotaxia/fisiologia , Nucleotídeos/fisiologia , Receptores de Superfície Celular/fisiologia , Receptores Purinérgicos P1/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Animais , Movimento Celular/fisiologia , Quimiotaxia de Leucócito/fisiologia , Humanos , Microglia/fisiologia , Neoplasias/patologia , Neutrófilos/fisiologia
18.
FASEB J ; 23(6): 1685-93, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19211924

RESUMO

T-cell activation requires the influx of extracellular calcium, although mechanistic details regarding such activation are not fully defined. Here, we show that P2X(7) receptors play a key role in calcium influx and downstream signaling events associated with the activation of T cells. By real-time PCR and immunohistochemistry, we find that Jurkat T cells and human CD4(+) T cells express abundant P2X(7) receptors. We show, using a novel fluorescent microscopy technique, that T-cell receptor (TCR) stimulation triggers the rapid release of ATP (<100 microM). This release of ATP is required for TCR-mediated calcium influx, NFAT activation, and interleukin-2 (IL-2) production. TCR activation up-regulates P2X(7) receptor gene expression. Removal of extracellular ATP by apyrase or alkaline phosphatase treatment, inhibition of ATP release with the maxi-anion channel blocker gadolinium chloride, or siRNA silencing of P2X(7) receptors blocks calcium entry and inhibits T-cell activation. Moreover, lymphocyte activation is impaired in C57BL/6 mice that express poorly functional P2X(7) receptors, compared to control BALB/c mice, which express fully functional P2X(7) receptors. We conclude that ATP release and autocrine, positive feedback through P2X(7) receptors is required for the effective activation of T cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Comunicação Autócrina/fisiologia , Linfócitos T CD4-Positivos/metabolismo , Sinalização do Cálcio/fisiologia , Ativação Linfocitária , Receptores Purinérgicos P2/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Cálcio/metabolismo , Humanos , Interleucina-2/genética , Interleucina-2/metabolismo , Células Jurkat , Camundongos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X7
19.
Front Pharmacol ; 10: 323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024300

RESUMO

Uncontrolled bacteremia is a common and life threatening condition that can lead to sepsis and septic shock with significant morbidity and mortality. Neutrophil granulocytes, the most abundant phagocytic leukocyte of the innate immune system, play an essential role in capturing and killing invading pathogens. Their antimicrobial repertoire includes the formation of Neutrophil Extracellular Traps (NETs), chromatin-based, web-like structures of DNA that facilitate the capture and killing of bacteria. In sepsis, however, it has been suggested that the uncontrolled release of NETs worsens disseminated coagulation and promotes venous thrombosis. Here, we describe how clinically relevant concentrations of the commonly used sedative propofol as well as a lipid composition similar to the propofol carrier impair NET production by human neutrophils. Drugs commonly administered in the Intensive Care Unit (ICU) may impact the inflammatory response to either worsen or improve clinical outcomes and may therefore be considered for additional therapeutic effects if clinical studies confirm such findings.

20.
Microbiol Mol Biol Rev ; 82(1)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29436479

RESUMO

Comprising the majority of leukocytes in humans, neutrophils are the first immune cells to respond to inflammatory or infectious etiologies and are crucial participants in the proper functioning of both innate and adaptive immune responses. From their initial appearance in the liver, thymus, and spleen at around the eighth week of human gestation to their generation in large numbers in the bone marrow at the end of term gestation, the differentiation of the pluripotent hematopoietic stem cell into a mature, segmented neutrophil is a highly controlled process where the transcriptional regulators C/EBP-α and C/EBP-ε play a vital role. Recent advances in neutrophil biology have clarified the life cycle of these cells and revealed striking differences between neonatal and adult neutrophils based on fetal maturation and environmental factors. Here we detail neutrophil ontogeny, granulopoiesis, and neutrophil homeostasis and highlight important differences between neonatal and adult neutrophil populations.


Assuntos
Regulação da Expressão Gênica/imunologia , Hematopoese/imunologia , Homeostase/imunologia , Neutrófilos/fisiologia , Adulto , Fatores Etários , Animais , Apoptose/imunologia , Morte Celular/imunologia , Grânulos Citoplasmáticos/fisiologia , Armadilhas Extracelulares/imunologia , Hemangioblastos/fisiologia , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Homeostase/genética , Humanos , Imunidade Inata , Recém-Nascido , Neutrófilos/imunologia , Fagocitose , Elementos Reguladores de Transcrição/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA