Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Environ Sci Technol ; 57(16): 6589-6598, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37061949

RESUMO

Mask wearing and bleach disinfectants became commonplace during the COVID-19 pandemic. Bleach generates toxic species including hypochlorous acid (HOCl), chlorine (Cl2), and chloramines. Their reaction with organic species can generate additional toxic compounds. To understand interactions between masks and bleach disinfection, bleach was injected into a ventilated chamber containing a manikin with a breathing system and wearing a surgical or KN95 mask. Concentrations inside the chamber and behind the mask were measured by a chemical ionization mass spectrometer (CIMS) and a Vocus proton transfer reaction mass spectrometer (Vocus PTRMS). HOCl, Cl2, and chloramines were observed during disinfection and concentrations inside the chamber are 2-20 times greater than those behind the mask, driven by losses to the mask surface. After bleach injection, many species decay more slowly behind the mask by a factor of 0.5-0.7 as they desorb or form on the mask. Mass transfer modeling confirms the transition of the mask from a sink during disinfection to a source persisting >4 h after disinfection. Humidifying the mask increases reactive formation of chloramines, likely related to uptake of ammonia and HOCl. These experiments indicate that masks are a source of chemical exposure after cleaning events occur.


Assuntos
COVID-19 , Desinfetantes , Humanos , Ácido Hipocloroso , Cloraminas/química , Respiradores N95 , Pandemias , Desinfetantes/química , Desinfetantes/toxicidade , Desinfecção , Cloro/química
2.
Environ Sci Technol ; 56(3): 1594-1604, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35061386

RESUMO

Water uptake by thin organic films and organic particles on glass substrates at 80% relative humidity was investigated using atomic force microscopy-infrared (AFM-IR) spectroscopy. Glass surfaces exposed to kitchen cooking activities show a wide variability of coverages from organic particles and organic thin films. Water uptake, as measured by changes in the volume of the films and particles, was also quite variable. A comparison of glass surfaces exposed to kitchen activities to model systems shows that they can be largely represented by oxidized oleic acid and carboxylate groups on long and medium hydrocarbon chains (i.e., fatty acids). Overall, we demonstrate that organic particles and thin films that cover glass surfaces can take up water under indoor-relevant conditions but that the water content is not uniform. The spatial heterogeneity of the changes in these aged glass surfaces under dry (5%) and wet (80%) conditions is quite marked, highlighting the need for studies at the nano- and microscale.


Assuntos
Culinária , Água , Vidro , Microscopia de Força Atômica/métodos , Espectrofotometria Infravermelho , Água/química
3.
Risk Anal ; 42(9): 2075-2088, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34713463

RESUMO

Aerosol transmission has played a significant role in the transmission of COVID-19 disease worldwide. We developed a COVID-19 aerosol transmission risk estimation model to better understand how key parameters associated with indoor spaces and infector emissions affect inhaled deposited dose of aerosol particles that convey the SARS-CoV-2 virus. The model calculates the concentration of size-resolved, virus-laden aerosol particles in well-mixed indoor air challenged by emissions from an index case(s). The model uses a mechanistic approach, accounting for particle emission dynamics, particle deposition to indoor surfaces, ventilation rate, and single-zone filtration. The novelty of this model relates to the concept of "inhaled & deposited dose" in the respiratory system of receptors linked to a dose-response curve for human coronavirus HCoV-229E. We estimated the volume of inhaled & deposited dose of particles in the 0.5-4 µm range expressed in picoliters (pL) in a well-documented COVID-19 outbreak in restaurant X in Guangzhou China. We anchored the attack rate with the dose-response curve of HCoV-229E which provides a preliminary estimate of the average SARS-CoV-2 dose per person, expressed in plaque forming units (PFUs). For a reasonable emission scenario, we estimate approximately three PFU per pL deposited, yielding roughly 10 PFUs deposited in the respiratory system of those infected in restaurant X. To explore the model's utility, we tested it with four COVID-19 outbreaks. The risk estimates from the model fit reasonably well with the reported number of confirmed cases given available metadata from the outbreaks and uncertainties associated with model assumptions.


Assuntos
COVID-19 , China , Humanos , Aerossóis e Gotículas Respiratórios , SARS-CoV-2
5.
Environ Sci Technol ; 49(7): 4398-406, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25748309

RESUMO

We develop an ozone transport and reaction model to determine reaction probabilities and assess the importance of physical properties such as porosity, pore diameter, and material thickness on reactive uptake of ozone to five materials. The one-dimensional model accounts for molecular diffusion from bulk air to the air-material interface, reaction at the interface, and diffusive transport and reaction through material pore volumes. Material-ozone reaction probabilities that account for internal transport and internal pore area, γ(ipa), are determined by a minimization of residuals between predicted and experimentally derived ozone concentrations. Values of γ(ipa) are generally less than effective reaction probabilities (γ(eff)) determined previously, likely because of the inclusion of diffusion into substrates and reaction with internal surface area (rather than the use of the horizontally projected external material areas). Estimates of γ(ipa) average 1 × 10(-7), 2 × 10(-7), 4 × 10(-5), 2 × 10(-5), and 4 × 10(-7) for two types of cellulose paper, pervious pavement, Portland cement concrete, and an activated carbon cloth, respectively. The transport and reaction model developed here accounts for observed differences in ozone removal to varying thicknesses of the cellulose paper, and estimates a near constant γ(ipa) as material thickness increases from 0.02 to 0.16 cm.


Assuntos
Modelos Teóricos , Ozônio/química , Celulose , Carvão Vegetal , Difusão , Papel , Porosidade
6.
J Air Waste Manag Assoc ; 65(8): 937-47, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26211635

RESUMO

Nitrogen oxides (NOx) emitted from combustion processes have elevated concentrations in large urban areas. They cause a range of adverse health effects, acid rain, and are precursors to formation of other atmospheric pollutants, such as ozone, peroxyacetyl nitrate, and inorganic aerosols. Photocatalytic materials containing a semi-conductor that can be activated by sunlight, such as titanium dioxide, have been studied for their ability to remove NOx. The study presented herein aims to elucidate the environmental parameters that most influence the NOx removal efficiency of photocatalytic coatings in hot and humid climate conditions. Concrete samples coated with a commercially available photocatalytic coating (a stucco) and an uncoated sample have been tested in a reactor simulating reasonable summertime outdoor sunlight, relative humidity and temperature conditions in southeast Texas. Two-level full factorial experiments were completed on each sample for five parameters. It was found that contact time, relative humidity and temperature significantly influenced both NO and NO2removal. Elevated concentrations of organic pollutants reduced NO removal by the coating. Ultra-violet light intensity did not significantly influence removal of NO or NO2, however, ultra-violet light intensity was involved in a two-factor interaction that significantly influenced removal of both NO and NO2.


Assuntos
Meio Ambiente , Óxidos de Nitrogênio/química , Poluentes Atmosféricos/química , Alcenos/química , Catálise , Umidade , Luz , Fotólise , Propano/química , Temperatura , Fatores de Tempo
7.
Artigo em Inglês | MEDLINE | ID: mdl-26259926

RESUMO

Trichloroethylene (TCE) in groundwater has the potential to volatilize through soil into indoor air where it can be inhaled. The purpose of this study was to determine whether individuals living above TCE-contaminated groundwater are exposed to TCE through vapor intrusion. We examined associations between TCE concentrations in various environmental media and TCE concentrations in residents. For this assessment, indoor air, outdoor air, soil gas, and tap water samples were collected in and around 36 randomly selected homes; blood samples were collected from 63 residents of these homes. Additionally, a completed exposure survey was collected from each participant. Environmental and blood samples were analyzed for TCE. Mixed model multiple linear regression analyses were performed to determine associations between TCE in residents' blood and TCE in indoor air, outdoor air, and soil gas. Blood TCE concentrations were above the limit of quantitation (LOQ; ≥ 0.012 µg L(-1)) in 17.5% of the blood samples. Of the 36 homes, 54.3%, 47.2%, and >84% had detectable concentrations of TCE in indoor air, outdoor air, and soil gas, respectively. Both indoor air and soil gas concentrations were statistically significantly positively associated with participants' blood concentrations (P = 0.0002 and P = 0.04, respectively). Geometric mean blood concentrations of residents from homes with indoor air concentrations of >1.6 µg m(-3) were approximately 50 times higher than geometric mean blood TCE concentrations in participants from homes with no detectable TCE in indoor air (P < .0001; 95% CI 10.4-236.4). This study confirms the occurrence of vapor intrusion and demonstrates the magnitude of exposure from vapor intrusion of TCE in a residential setting.


Assuntos
Exposição Ambiental/análise , Tricloroetileno/análise , Adulto , Poluição do Ar em Ambientes Fechados/análise , Características da Família , Feminino , Gases/química , Água Subterrânea/química , Humanos , Limite de Detecção , Masculino , Solo/química , Tricloroetileno/sangue , Volatilização , Água/química
8.
Environ Sci Technol ; 48(7): 3682-90, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24568620

RESUMO

Models of reactive uptake of ozone in indoor environments generally describe materials through aerial (horizontal) projections of surface area, a potentially limiting assumption for porous materials. We investigated the effect of changing porosity/pore size, material thickness, and chamber fluid mechanic conditions on the reactive uptake of ozone to five materials: two cellulose filter papers, two cementitious materials, and an activated carbon cloth. Results include (1) material porosity and pore size distributions, (2) effective diffusion coefficients for ozone in materials, and (3) material-ozone deposition velocities and reaction probabilities. At small length scales (0.02-0.16 cm) increasing thickness caused increases in estimated reaction probabilities from 1 × 10(-6) to 5 × 10(-6) for one type of filter paper and from 1 × 10(-6) to 1 × 10(-5) for a second type of filter paper, an effect not observed for materials tested at larger thicknesses. For high porosity materials, increasing chamber transport-limited deposition velocities resulted in increases in reaction probabilities by factors of 1.4-2.0. The impact of physical properties and transport effects on values of the Thiele modulus, ranging across all materials from 0.03 to 13, is discussed in terms of the challenges in estimating reaction probabilities to porous materials in scenarios relevant to indoor environments.


Assuntos
Celulose/química , Manufaturas , Ozônio/isolamento & purificação , Fenômenos Físicos , Carvão Vegetal/química , Materiais de Construção , Difusão , Mercúrio/análise , Filtros Microporos , Modelos Teóricos , Papel , Porosidade , Reologia
9.
ACS Eng Au ; 4(2): 204-212, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646518

RESUMO

A rise in the disinfection of spaces occurred as a result of the COVID-19 pandemic as well as an increase in people wearing facial coverings. Hydrogen peroxide was among the recommended disinfectants for use against the virus. Previous studies have investigated the emissions of hydrogen peroxide associated with the disinfection of spaces and masks; however, those studies did not focus on the emitted byproducts from these processes. Here, we simulate the disinfection of an indoor space with H2O2 while a person wearing a face mask is present in the space by using an environmental chamber with a thermal manikin wearing a face mask over its breathing zone. We injected hydrogen peroxide to disinfect the space and utilized a chemical ionization mass spectrometer (CIMS) to measure the primary disinfectant (H2O2) and a Vocus proton transfer reaction time-of-flight mass spectrometer (Vocus PTR-ToF-MS) to measure the byproducts from disinfection, comparing concentrations inside the chamber and behind the mask. Concentrations of the primary disinfectant and the byproducts inside the chamber and behind the mask remained elevated above background levels for 2-4 h after disinfection, indicating the possibility of extended exposure, especially when continuing to wear the mask. Overall, our results point toward the time-dependent impact of masks on concentrations of disinfectants and their byproducts and a need for regular mask change following exposure to high concentrations of chemical compounds.

10.
J Occup Environ Hyg ; 10(6): 328-35, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23570396

RESUMO

In this study, modifications were made to previously applied two-zone models to address important factors that can affect exposures during cleaning tasks. Specifically, we expand on previous applications of the two-zone model by (1) introducing the source in discrete elements (source-cells) as opposed to a complete instantaneous release, (2) placing source cells in both the inner (near person) and outer zones concurrently, (3) treating each source cell as an independent mixture of multiple constituents, and (4) tracking the time-varying liquid concentration and emission rate of each constituent in each source cell. Three experiments were performed in an environmentally controlled chamber with a thermal mannequin and a simplified pure chemical source to simulate emissions from a cleaning product. Gas phase concentration measurements were taken in the bulk air and in the breathing zone of the mannequin to evaluate the model. The mean ratio of the integrated concentration in the mannequin's breathing zone to the concentration in the outer zone was 4.3 (standard deviation, σ = 1.6). The mean ratio of measured concentration in the breathing zone to predicted concentrations in the inner zone was 0.81 (σ = 0.16). Intake fractions ranged from 1.9 × 10(-3) to 2.7 × 10(-3). Model results reasonably predict those of previous exposure monitoring studies and indicate the inadequacy of well-mixed single-zone model applications for some but not all cleaning events.


Assuntos
Detergentes/análise , Exposição por Inalação/análise , Exposição Ocupacional/análise , Compostos Orgânicos Voláteis/análise , Movimentos do Ar , Detergentes/química , Manequins , Modelos Teóricos , Ventilação , Compostos Orgânicos Voláteis/química
11.
J Expo Sci Environ Epidemiol ; 33(3): 339-346, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36424424

RESUMO

BACKGROUND: Several studies suggest that far-field transmission (>6 ft) explains a significant number of COVID-19 superspreading outbreaks. OBJECTIVE: Therefore, quantifying the ratio of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. METHODS: In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 0.76 m (2.5 ft), 1.52 m (5 ft), 2.28 m (7.5 ft) from the participant, as well as in the exhaust plenum of the chamber. RESULTS: We observed that 0.76 m (2.5 ft) trials had ~36-44% higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field exposure relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 0.76 m, 1.52 m, and 2.28 m were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. SIGNIFICANCE: This study suggests that for rooms with similar airflow parameters disease transmission risk is dominated by near-field exposures for shorter event durations (e.g., initial 20-25-minutes of event) whereas far-field exposures are critical throughout the entire event and are increasingly more important for longer event durations. IMPACT STATEMENT: We offer a novel methodology for studying the fate and transport of airborne bioaerosols in indoor spaces using VOCs as unique proxies for bioaerosols. We provide evidence that real-time measurement of VOCs can be applied in settings with human subjects to estimate the concentration of bioaerosol at different distances from the emitter. We also improve upon the conventional assumption that a well-mixed room exhibits instantaneous and perfect mixing by addressing spatial distances and mixing over time. We quantitatively assessed the exposure levels to breath tracers at alternate distances and provided more insights into the changes on "near-field to far-field" ratios over time. This method can be used in future to estimate the benefits of alternate environmental conditions and occupant behaviors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Transmissão de Doença Infecciosa , Poluentes Atmosféricos/análise , Testes Respiratórios , Compostos Orgânicos Voláteis , Aerossóis
12.
J Air Waste Manag Assoc ; 62(9): 1075-84, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23019821

RESUMO

UNLABELLED: p-Dichlorobenzene (p-DCB) and naphthalene are classified as hazardous air pollutants and rank highly among chronic chemical hazards in US. residences. Sources of p-DCB and naphthalene include moth repellents and deodorizers typically used in closets, garment bags, and toilet bowls. Nearly pure concentrations of p-DCB and naphthalene are found in these products. p-DCB and naphthalene mass emission rates were determined for four different products placed in well-ventilated laboratory chambers as well as closets in a test house and in a garment bag. Concentrations were measured in bedrooms adjacent to closets where products were used. Emission rates varied considerably between products that contain p-DCB, primarily due to product packaging, and were generally suppressed when the product was used in closed closet or garments bags relative to products placed in well-ventilated chambers. This reduction appears to be due to lower air speeds in closets and garment bags as opposed to chemical accumulation. Variations in air temperature within typical ranges observed in homes can significantly influence emission rates of p-DCB and naphthalene. Concentrations of p-DCB and naphthalene in bedrooms adjacent to closets where moth repellents are used can exceed or approach odor thresholds. For this study, the concentrations exceeded or were within the upper few percentiles of those previously reported in residential indoor air. Based on a comparison of whole-house emission rates derived in a previous study, it appears that somewhere between 2% and 12% of homes in that study had active sources of p-DCB and between 5% and 15% had active sources of naphthalene. IMPLICATIONS: Inhalation of p-DCB and naphthalene has been linked to several health effects. Several off-the-shelf consumer products are nearly pure p-DCB or naphthalene, thus leading to potential for high emission rates and gas-phase concentrations in indoor environments where such products are used. Knowledge of p-DCB and naphthalene emission rates and variability in emissions with environmental conditions should provide for improvements in predictions of indoor concentrations of these compounds, which are in turn needed to complete exposure and inhalation risk assessments.


Assuntos
Poluentes Atmosféricos/análise , Clorobenzenos/análise , Produtos Domésticos/análise , Naftalenos/análise
13.
Res Sq ; 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35291299

RESUMO

Several studies suggest that far-field transmission (> 6 ft) explains the significant number of COVID-19 superspreading outbreaks. Therefore, quantitative evaluation of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 2.5 ft, 5 ft, 7.5 ft from the participant, as well as in the exhaust plenum of the chamber. We observed that 2.5 ft trials had substantially (~36-44%) higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 2.5 ft, 5 ft, and 7.5 ft were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. Our findings highlight the importance of far-field transmission of airborne pathogens including SARS-CoV-2, which need to be considered in public health decision making.

15.
Environ Sci Process Impacts ; 22(8): 1698-1709, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32661531

RESUMO

Indoor surfaces are extremely diverse and their interactions with airborne compounds and aerosols influence the lifetime and reactivity of indoor emissions. Direct measurements of the physical and chemical state of these surfaces provide insights into the underlying physical and chemical processes involving surface adsorption, surface partitioning and particle deposition. Window glass, a ubiquitous indoor surface, was placed vertically during indoor activities throughout the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign and then analyzed to measure changes in surface morphology and surface composition. Atomic force microscopy-infrared (AFM-IR) spectroscopic analyses reveal that deposition of submicron particles from cooking events is a contributor to modifying the chemical and physical state of glass surfaces. These results demonstrate that the deposition of glass surfaces can be an important sink for organic rich particles material indoors. These findings also show that particle deposition contributes enough organic matter from a single day of exposure equivalent to a uniform film up to two nanometers in thickness, and that the chemical distinctness of different indoor activities is reflective of the chemical and morphological changes seen in these indoor surfaces. Comparison of the experimental results to physical deposition models shows variable agreement, suggesting that processes not captured in physical deposition models may play a role in the sticking of particles on indoor surfaces.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Culinária , Adsorção , Aerossóis , Tamanho da Partícula
16.
J Occup Environ Hyg ; 5(4): 232-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18247227

RESUMO

Vacuuming is generally considered to be an important activity with respect to the cleanliness of indoor environments but may lead to short-term resuspension of particulate matter and elevated particle mass in indoor air. Because resuspended particles often contain toxicants, such as lead and pesticides, or consist of biological agents that can trigger allergic reactions, it is important to understand the role of vacuuming on short-term variations in indoor particulate matter concentrations. The inhalation of particles during vacuuming events may affect adversely those whose occupation requires them to clean a wide range of indoor environments, from homes to schools and offices, as well as those who occupy those environments. In response, a series of 46 experiments was completed to determine time-variant concentrations of both PM(10) and PM(2.5) during various vacuuming activities in 12 separate apartments. Experiments involved the use of two different non-HEPA vacuum cleaners and were completed with a vacuum cleaner activated (switched on) as well as deactivated (switched off). The latter was intended to provide insight on the potential for resuspension of particles by the mechanical agitation of vacuum cleaner movement across carpet. Separate experiments were completed also using "mock" vacuuming simulations, that is, walking on the carpet in a manner consistent with using a vacuum cleaner. Results are presented as incremental particulate matter concentration increases, relative to background (prevacuum) concentrations, and peak-to-background particle concentration ratios. Results indicate significant resuspension of PM(10) mass during vacuum cleaning, with a mean time-averaged PM(10) increase of greater than 17 mu g/m(3) above background. Resuspension of PM(2.5) mass was determined to be small, that is, PM(10) mass was dominated by particles greater than 2.5 mu m. The frequency of vacuuming (between a 10-day standard frequency and several experiments at > 24 days between vacuuming) had little influence on resuspended particle mass. Resuspension by mechanical agitation (rolling of vacuum cleaner across carpet) with the vacuum cleaner switched off was determined to be substantial, with a mean time-averaged (during vacuuming) PM(10) increase of 35 mu g/m(3) relative to background. Peak-to-background PM(10) concentrations exceeded 6 for some experiments and averaged between approximately 3 and 4 for experiments when the vacuum cleaner was switched on.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental , Zeladoria , Material Particulado/análise , Movimentos do Ar , Filtração , Pisos e Cobertura de Pisos , Humanos , Tamanho da Partícula
18.
J Air Waste Manag Assoc ; 57(5): 576-85, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17518223

RESUMO

Several buildings were contaminated with Bacillus anthracis in the fall of 2001. These events required consideration of how to disinfect large indoor spaces for continued worker occupation. The interactions of gaseous disinfectants with indoor materials may inhibit the disinfection process, cause persistence of the disinfectant, and lead to possible byproduct formation and persistence. Methyl bromide (CH3Br) is a candidate for disinfection/deactivation of biological agents in buildings. In this study, 24 indoor materials were exposed to CH3Br for 16 hr at concentrations ranging from 100 to 2500 ppm in 48-L electropolished stainless steel chambers. CH3Br concentrations were measured during and after disinfection. Its interactions with materials were observed to be small, with nearly complete and rapid desorption. Between 3% and 8% of CH3Br adsorbed to four materials (office partition, ceiling tile, particle-board, and gypsum wallboard with satin paint), and the degree of adsorption decreased with increasing relative humidity. The percentage of adsorption to all other materials was <2%. This result suggests that when designing disinfection events with CH3Br, loss to indoor materials can be neglected in terms of disinfectant dose calculations. Possible reaction products were identified and/or quantified before and after exposure to CH3Br. Several monomethylated and dimethylated aliphatic compounds were observed in chamber air at low concentrations after the exposures of six materials to CH3Br. Concentration increases also occurred for chemicals that were observed to naturally off-gas from materials before exposure to CH3Br, suggesting that CH3Br may play a role in enhancing the natural off-gassing of chemicals, for example, by competitive displacement of compounds that already existed in the materials. The results described in this paper should facilitate the design of building disinfection systems involving CH3Br.


Assuntos
Materiais de Construção , Desinfetantes/química , Hidrocarbonetos Bromados/química , Adsorção , Algoritmos , Interpretação Estatística de Dados , Umidade
20.
J Expo Anal Environ Epidemiol ; 14(2): 109-19, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15014541

RESUMO

This study involved an assessment of chloroform formation due to the use of hypochlorite-containing detergents in dishwashers. The objective of this research was to quantify in-home formation of trihalomethanes, particularly as related to dishwasher usage. A series of 14 flask and 15 laboratory experiments were completed. Flask experiments involved the mixing of food with dishwasher detergent in water for a 12-min reaction period, and were intended to identify chemicals and relative levels of those chemicals that may form from dishwasher usage with different food groups. Liquid concentrations of chloroform ranged from 1 to 41 mg/l. Laboratory experiments involved collection of liquid and gas samples over the course of an operating cycle with an actual residential dishwasher. Background concentrations of chloroform in the water supply were generally between 0 and 10 microg/l; liquid chloroform levels in the wash cycle were typically at least 50 microg/l. Chloroform concentrations were as high as 20 microg/l in the dishwasher headspace. Using mass balance equations for a typical residential house and laboratory results from this research, predicted concentrations resulting from dishwasher usage were similar to typical background concentrations in residential dwellings.


Assuntos
Poluição do Ar em Ambientes Fechados , Detergentes/química , Trialometanos , Poluição do Ar em Ambientes Fechados/análise , Utensílios Domésticos , Humanos , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA