Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Microb Pathog ; 110: 586-593, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28789875

RESUMO

Piscirickettsia salmonis is an intracellular bacterium and the causative agent of Piscirickettsiosis, a disease responsible for considerable mortalities in the Chilean salmon farming industry. Currently, P. salmonis protein translocation across the membrane and the mechanisms by which virulence factors are delivered to host cells are poorly understood. However, it is known that Gram-negative bacteria possess several mechanisms that transport proteins to the periplasmic and extracellular compartments. The aim of this study was to evaluate the expressional changes of several genes in the P. salmonis Sec-dependent pathway and type 4B secretion system during in vitro infection. Genes homologous and the main proteins belonging to Sec-dependent pathway and Type 4 Dot/Icm secretion system were found in the genome and proteome of P. salmonis AUSTRAL-005 strain. Additionally, several genes of these protein transport mechanisms were overexpressed during in vitro P. salmonis infection in SHK-1 cell line. The obtained data indicate that the Sec-dependent pathway and Type 4B secretion system are biologically active during P. salmonis infection. These mechanisms could contribute to the recycling of proteins into the inner and outer bacterial membrane and in translocate virulence factors to infected cell, which would favor the structural integrity and virulence of this bacterium.


Assuntos
Perfilação da Expressão Gênica , Piscirickettsia/crescimento & desenvolvimento , Piscirickettsia/genética , Sistemas de Secreção Tipo IV/biossíntese , Sistemas de Secreção Tipo IV/genética , Animais , Linhagem Celular , Células Epiteliais/microbiologia , Genômica , Proteômica , Salmão
3.
Fish Shellfish Immunol Rep ; 3: 100068, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36569039

RESUMO

The coordinated migration of immune cells from lymphoid organs to in or out of the bloodstream, and towards the site of infection or tissue damage is fundamental for an efficient innate and adaptive immune response. Interestingly, an essential part of this movement is mediated by chemoattractant cytokines called chemokines. Although the nature and function of chemokines and their receptors are well documented in mammals, much research is needed to accomplish a similar level of understanding of the role of chemokines in fish immunity. The first chemokine gene identified in teleosts (rainbow trout, Oncorhynchus mykiss) was CK1 in 1998. Since then, the identification of fish chemokine orthologue genes and characterization of their role has been more complex than expected, primarily because of the whole genome duplication processes occurring in fish, and because chemokines evolve faster than other immune genes. Some of the most studied chemokines are CXCL9, CXCL10, CXCL11, and the CXCR3 receptor, all involved in T cell migration and in the induction of the T helper 1 (Th1) immune response. Data from the zebrafish and rainbow trout CXCL9-11/CXCR3 axis suggest that these chemokines and the receptor arose early in evolution and must be present in most teleost fish. However, the pieces of knowledge also indicate that different numbers of gene copies can be present in different species, with distinct regulatory expression mechanisms and probably, also with different roles, as the differential expression in fish tissues suggest. Here, we revised the current knowledge of the CXCL9-11/CXCR3 axis in teleost fishes, identifying the gaps in knowledge, and raising some hypotheses for the role of CXCL9, CXCL10 CXCL11, and CXCR3 receptor axis in fish, which can encourage further studies in the field.

4.
Animals (Basel) ; 12(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35049801

RESUMO

The demand of optimal protein for human consumption is growing. The Food and Agriculture Organization (FAO) has highlighted aquaculture as one of the most promising alternatives for this protein supply gap due to the high efficiency of fish growth. However, aquaculture has been facing its own sustainability problem, because its high demand for protein has been traditionally satisfied with the use of fishmeal (FM) as the main source. Some of the most promising and sustainable protein substitutes for FM come from insects. The present manuscript provides insight into an experiment carried out on rainbow trout (Oncorhynchus mykiss) with a 50% replacement of FM with different larvae insect meals: Hermetia illucens (HI), and Tenebrio molitor (TM). TM showed better results for growth, protein utilization and more active digestive function, supported by intestinal histological changes. Liver histology and intermediary metabolism did not show relevant changes between insect meals, while other parameters such as antioxidant enzyme activities and tissue damage indicators showed the potential of insect meals as functional ingredients.

5.
Front Immunol ; 12: 599530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717079

RESUMO

The present study investigated effects of dietary inclusion of black soldier fly larvae (BSFL) (Hermetia illucens) meal and paste on gut health, plasma biochemical parameters, immune response and skin mucus proteome in pre-smolt Atlantic salmon (Salmo salar). The seven-week experiment consisted of seven experimental diets: a control diet based on fishmeal and plant protein (Control-1); three BSFL meal diets, substituting 6.25% (6.25IM), 12.5% (12.5IM) and 25% (25IM) of protein; two BSFL paste diets, substituting 3.7% (3.7IP) and 6.7% (6.7IP) of protein and an extra control diet with 0.88% of formic acid (Control-2). The 6.25IM diet reduced enterocyte steatosis in pyloric caeca, improved distal intestine histology, and reduced IgM in distal intestine. The fish fed 12.5IM diet reduced enterocyte steatosis in pyloric caeca, improved distal intestine histology, had a higher plasma lysozyme content compared to 6.25IM, and tend to increase phagocytic activity in head-kidney macrophages-like cells. On the other hand, 25IM diet improved distal intestine histology, but showed mild-moderate enterocyte steatosis in pyloric caeca, increased IFNγ and reduced IgM in distal intestine. In the case of BSFL paste diets, 3.7IP diet caused mild inflammatory changes in distal intestine, although it reduced enterocyte steatosis in pyloric caeca. The 6.7IP diet reduced enterocyte steatosis in pyloric caeca and improved distal intestine histology. Increasing level of BSFL meal in the diet linearly decreased plasma C-reactive protein, whereas increasing level of BSFL paste linearly increased plasma antioxidant capacity. Dietary inclusion of BSFL meal and paste had minor effects on the expression profile of proteins in skin mucus and no effects on immune markers in splenocytes. BSFL meal showed no negative effect on liver and muscle health as indicated by plasma alanine aminotranseferase, asparate aminotransferase and creatine kinase. The present study showed that replacing conventional protein sources with low to moderate levels of BSFL meal (6.25% and 12.5%) or paste (3.7% and 6.7%) reduced enterocyte steatosis in pyloric caeca, while replacing up to 25% with BSFL meal or 6.7% with paste improved distal intestine histology. Further, dietary inclusion of BSFL meal and paste had minor effects on skin mucus proteome and immune response in Atlantic salmon.


Assuntos
Ração Animal , Imunidade , Muco/metabolismo , Proteoma , Salmo salar/imunologia , Salmo salar/metabolismo , Ração Animal/análise , Animais , Biomarcadores , Ensaio de Imunoadsorção Enzimática , Larva , Macrófagos/imunologia , Macrófagos/metabolismo , Especificidade de Órgãos , Fagocitose , Proteômica/métodos , Pele/metabolismo
6.
J Alzheimers Dis ; 14(3): 259-69, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18599953

RESUMO

Herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) belong to the family Herpesviridae, the subfamily Alphaherpesvirinae, and the genus Simplexvirus. They are ubiquitous, neurotropic, and the most common pathogenic cause of sporadic acute encephalitis in humans. Herpes simplex encephalitis (HSE) is associated with a high mortality rate and significant neurological, neuropsychological, and neurobehavioral sequelae, which afflict patients for life. HSV-1 has been suggested as an environmental risk factor for Alzheimer's disease. However, the mechanisms involved in HSV-1 infection that may trigger the neurodegenerative process are still unknown. In general, HSV-1 induced cytoskeletal alterations reported to date involve the overall disruption of one or more elements of the cytoskeleton in cell lines. Axonal injury has recently attracted attention as a key predictor for the outcome of a number of brain disorders. Here we show that infection of mice neuronal cultures with HSV-1 result in marked neurite damage and neuronal death. Furthermore, in this in vitro model of infection, neurons manifested considerable alterations in microtubule dynamics and tau hyperphosphorylation. These results suggest a possible link between HSV-1 infection and neuronal cytoskeletal disruption.


Assuntos
Citoesqueleto/patologia , Encefalite por Herpes Simples/complicações , Herpesvirus Humano 1/isolamento & purificação , Degeneração Neural/patologia , Degeneração Neural/virologia , Western Blotting , Células Cultivadas , Citoesqueleto/metabolismo , Encefalite por Herpes Simples/metabolismo , Imunofluorescência , Humanos , Hibridização in Situ Fluorescente , Degeneração Neural/metabolismo , Neuritos/patologia , Fosforilação , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo
7.
FEMS Microbiol Lett ; 365(16)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29986002

RESUMO

Piscirickettsia salmonis is an intracellular γ-proteobacteria and the etiological agent of piscirickettsiosis, which causes massive economic losses in the Chilean salmon industry. The type IV pili (T4P) play an important role in adherence to host cell surfaces and bacterial pathogenicity. T4P contains a variable number of components, as predicted in P. salmonis genomes. However, no studies have determined if P. salmonis possesses T4P. The aims of this investigation were to identify T4P components in the P. salmonis type strain LF-89T, evaluate respective transcript expressions, and analyze the main putative T4P proteins using bioinformatics and proteomic approaches. Two main clusters of P. salmonis T4P genes were found. Expression of the pilA gene was upregulated at 4 h post-infection (hpi), while pilQ was upregulated 4 days post-infection. At 16 hpi, pilB and pilD were strongly upregulated. The PilA amino acid sequence analysis showed a conserved N-terminal domain and sequence motifs critical for T4P biosynthesis. MudPIT analysis revealed PilA in the P. salmonis LF-89T proteome, and TEM showed pili-like filamentous structures on the P. salmonis surface. These results strongly suggest the presence of a T4P-like structure in P. salmonis.


Assuntos
Fímbrias Bacterianas/metabolismo , Doenças dos Peixes/microbiologia , Piscirickettsia/metabolismo , Infecções por Piscirickettsiaceae/veterinária , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Genômica , Piscirickettsia/química , Piscirickettsia/genética , Piscirickettsia/crescimento & desenvolvimento , Infecções por Piscirickettsiaceae/microbiologia , Proteômica , Salmo salar/microbiologia , Alinhamento de Sequência
8.
Artigo em Inglês | MEDLINE | ID: mdl-29034215

RESUMO

Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs) released by P. salmonis deliver several virulence factors to host cells. To improve on existing knowledge for the pathogenicity-associated functions of P. salmonis MVs, we studied the proteome of purified MVs from the P. salmonis LF-89 type strain using multidimensional protein identification technology. Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89 was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified 452 proteins of different subcellular origins; most of them were associated with the cytoplasmic compartment and were mainly related to key functions for pathogen survival. Interestingly, previously unidentified putative virulence-related proteins were identified in P. salmonis MVs, such as outer membrane porin F and hemolysin. Additionally, five amino acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein characteristics of this P. salmonis type strain.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Vesículas Citoplasmáticas/metabolismo , Piscirickettsia/metabolismo , Proteoma , Sequência de Aminoácidos , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Toxinas Bacterianas/isolamento & purificação , Enterotoxinas , Proteínas de Escherichia coli , Doenças dos Peixes/metabolismo , Proteínas Hemolisinas , Piscirickettsia/patogenicidade , Plasmídeos , Porinas , Proteômica/métodos , Fatores de Virulência/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA