RESUMO
Tissue macrophages provide immunological defense and contribute to the establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator Mecp2 in macrophages. Mice that lacked the gene encoding Mecp2, which is associated with Rett syndrome, in macrophages did not show signs of neurodevelopmental disorder but displayed spontaneous obesity, which was linked to impaired function of brown adipose tissue (BAT). Specifically, mutagenesis of a BAT-resident Cx3Cr1+ macrophage subpopulation compromised homeostatic thermogenesis but not acute, cold-induced thermogenesis. Mechanistically, malfunction of BAT in pre-obese mice with mutant macrophages was associated with diminished sympathetic innervation and local titers of norepinephrine, which resulted in lower expression of thermogenic factors by adipocytes. Mutant macrophages overexpressed the signaling receptor and ligand PlexinA4, which might contribute to the phenotype by repulsion of sympathetic axons expressing the transmembrane semaphorin Sema6A. Collectively, we report a previously unappreciated homeostatic role for macrophages in the control of tissue innervation. Disruption of this circuit in BAT resulted in metabolic imbalance.
Assuntos
Tecido Adiposo Marrom/imunologia , Macrófagos/imunologia , Proteína 2 de Ligação a Metil-CpG/genética , Sistema Nervoso Simpático/metabolismo , Termogênese/imunologia , Adipócitos Marrons , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Animais , Axônios/metabolismo , Receptor 1 de Quimiocina CX3C , Metabolismo Energético/imunologia , Citometria de Fluxo , Homeostase , Immunoblotting , Macrófagos/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Norepinefrina/metabolismo , Obesidade/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/metabolismo , Receptores de Quimiocinas/metabolismo , Semaforinas/metabolismoRESUMO
Tumor tissues are populated by a multitude of macrophages, highly different in functional activity, localization and morphology. A clear contribution to disease progression has been shown in multiple cancer types, holding promise for the development of innovative macrophage-based prognostic tools. Current studies aimed at assessing the prognostic role of macrophages have documented the relevance of the macrophage population as a whole. However, dissecting the diversity of mononuclear phagocytes in tumor tissues has provided important information about the coexistence of distinct populations of macrophages with different prognostic significance. Here we summarize evidence of macrophage prognostic function in human cancer and focus on classical and modern strategies aimed at measuring macrophage features and deciphering their diversity. The wealth of new data generated will reshape our knowledge of macrophage complexity and hopefully foster the forthcoming development of these new metrics into prognostic tools as well as new therapeutic strategies.
Assuntos
Neoplasias/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Humanos , Neoplasias/diagnóstico , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Análise de Célula ÚnicaRESUMO
OBJECTIVE: Tumour-associated macrophages (TAMs) play key roles in tumour progression. Recent evidence suggests that TAMs critically modulate the efficacy of anticancer therapies, raising the prospect of their targeting in human cancer. DESIGN: In a large retrospective cohort study involving 110 patients with pancreatic ductal adenocarcinoma (PDAC), we assessed the density of CD68-TAM immune reactive area (%IRA) at the tumour-stroma interface and addressed their prognostic relevance in relation to postsurgical adjuvant chemotherapy (CTX). In vitro, we dissected the synergism of CTX and TAMs. RESULTS: In human PDAC, TAMs predominantly exhibited an immunoregulatory profile, characterised by expression of scavenger receptors (CD206, CD163) and production of interleukin 10 (IL-10). Surprisingly, while the density of TAMs associated to worse prognosis and distant metastasis, CTX restrained their protumour prognostic significance. High density of TAMs at the tumour-stroma interface positively dictated prognostic responsiveness to CTX independently of T-cell density. Accordingly, in vitro, gemcitabine-treated macrophages became tumoricidal, activating a cytotoxic gene expression programme, inhibiting their protumoural effect and switching to an antitumour phenotype. In patients with human PDAC, neoadjuvant CTX was associated to a decreased density of CD206(+) and IL-10(+) TAMs at the tumour-stroma interface. CONCLUSIONS: Overall, our data highlight TAMs as critical determinants of prognostic responsiveness to CTX and provide clinical and in vitro evidence that CTX overall directly re-educates TAMs to restrain tumour progression. These results suggest that the quantification of TAMs could be exploited to select patients more likely to respond to CTX and provide the basis for novel strategies aimed at re-educating macrophages in the context of CTX.
Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Carcinoma Ductal Pancreático , Quimioterapia Adjuvante/métodos , Macrófagos/imunologia , Pancreatectomia/métodos , Neoplasias Pancreáticas , Adulto , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Feminino , Humanos , Interleucina-10/análise , Itália , Lectinas Tipo C/análise , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/análise , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Seleção de Pacientes , Prognóstico , Receptores de Superfície Celular/análise , Reprodutibilidade dos Testes , Estudos Retrospectivos , Estatística como Assunto , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologiaRESUMO
PURPOSE: Eliciting antitumor T-cell response by targeting the PD-1/PD-L1 axis with checkpoint inhibitors has emerged as a novel therapeutic strategy in non-small cell lung cancer (NSCLC). The identification of predictors for sensitivity or resistance to these agents is, therefore, needed. Herein, we investigate the correlation of metabolic information on FDG-PET with tissue expression of immune-checkpoints and other markers of tumor-related immunity in resected NSCLC patients. MATERIALS AND METHODS: All patients referred to our institution for upfront surgical resection of NSCLC, who were investigated with FDG-PET prior to surgery, were consecutively included in the study. From January 2010 to May 2014, 55 patients (stage IA-IIIB; M:F = 42:13; mean age 68.9 years) were investigated. Sampled surgical tumor specimens were analyzed by immunohistochemistry (IHC) for CD68-TAMs (tumor-associated macrophages), CD8-TILs (tumor infiltrating lymphocytes), PD-1-TILs, and PD-L1 tumor expression. Immunoreactivity was evaluated, and scores were compared with imaging findings. FDG-PET images were analyzed to define semi-quantitative parameters: SUVmax and SUVmean. Metabolic information on FDG-PET was correlated with tissue markers expression and disease-free survival (DFS) considering a median follow-up of 16.2 months. RESULTS: Thirty-six adenocarcinomas (ADC), 18 squamous cell carcinomas (SCC), and one sarcomatoid carcinoma were analyzed. All tumors resulted positive at FDG-PET: median SUVmax 11.3 (range: 2.3-32.5) and SUVmean 6.4 (range: 1.5-13) both resulted significantly higher in SCC compared to other NSCLC histotypes (p = 0.007 and 0.048, respectively). IHC demonstrated a median immunoreactive surface covered by CD68-TAMs of 5.41 % (range: 0.84-14.01 %), CD8-TILs of 2.9 % (range: 0.11-11.92 %), PD-1 of 0.65 % (range: 0.02-5.87 %), and PD-L1 of 0.7 % (range: 0.03-10.29 %). We found a statistically significant correlation between SUVmax and SUVmean with the expression of CD8 TILs (rho = 0.31; p = 0.027) and PD-1 (rho = 0.33; p = 0.017 and rho = 0.36; p = 0.009, respectively). The other tissue markers correlated as follows: CD8 TILs and PD-1 (rho = 0.45; p = 0.001), CD8 TILs and PD-L1 (rho = 0.41; p = 0.003), CD68-TAMs and PD-L1 (rho = 0.30; p = 0.027), PD-1 and PD-L1 (rho = 0.26; p = 0.059). With respect to patients' outcome, SUVmax, SUVmean, and disease stage showed a statistically significant correlation with DFS (p = 0.002, 0.004, and <0.001, respectively). CONCLUSIONS: The present study shows a direct association between metabolic parameters on FDG-PET and the expression of tumor-related immunity markers, suggesting a potential role for FDG-PET to characterize the tumor microenvironment and select NSCLC patients candidate to checkpoint inhibitors.
Assuntos
Biomarcadores Tumorais/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Fluordesoxiglucose F18/imunologia , Fatores Imunológicos/imunologia , Neoplasias Pulmonares/imunologia , Tomografia por Emissão de Pósitrons/métodos , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Citocinas/imunologia , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Cuidados Pré-Operatórios/métodos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estatística como AssuntoRESUMO
Introduction: Metabolic reprogramming is a hallmark feature of pancreatic ductal adenocarcinoma (PDAC). A pancreatic juice (PJ) metabolic signature has been reported to be prognostic of oncological outcome for PDAC. Integration of PJ profiling with transcriptomic and spatial characterization of the tumor microenvironment would help in identifying PDACs with peculiar vulnerabilities. Methods: We performed a transcriptomic analysis of 26 PDAC samples grouped into 3 metabolic clusters (M_CL) according to their PJ metabolic profile. We analyzed molecular subtypes and transcriptional differences. Validation was performed by multidimensional imaging on tumor slides. Results: Pancreatic juice metabolic profiling was associated with PDAC transcriptomic molecular subtypes (p=0.004). Tumors identified as M_CL1 exhibited a non-squamous molecular phenotype and demonstrated longer survival. Enrichment analysis revealed the upregulation of immune genes and pathways in M_CL1 samples compared to M_CL2, the group with worse prognosis, a difference confirmed by immunofluorescence on tissue slides. Enrichment analysis of 39 immune signatures by xCell confirmed decreased immune signatures in M_CL2 compared to M_CL1 and allowed a stratification of patients associated with longer survival. Discussion: PJ metabolic fingerprints reflect PDAC molecular subtypes and the immune microenvironment, confirming PJ as a promising source of biomarkers for personalized therapy.
RESUMO
Patients with colorectal liver metastasis (CLM) present with heterogenous clinical outcomes and improved classification is needed to ameliorate the therapeutic output. Macrophages (MÏ) hold promise as prognostic classifiers and therapeutic targets. Here, stemming from a single-cell analysis of mononuclear phagocytes infiltrating human CLM, we identified two MÏ markers associated with distinct populations with opposite clinical relevance. The invasive margin of CLM was enriched in pro-inflammatory monocyte-derived MÏ (MoMÏ) expressing the monocytic marker SERPINB2, and a more differentiated population, tumor-associated MÏ (TAM), expressing glycoprotein nonmetastatic melanoma protein B (GPNMB). SERPINB2+ MoMÏ had an early inflammatory profile, whereas GPNMB+ TAMs were enriched in pathways of matrix degradation, angiogenesis, and lipid metabolism and were found closer to the tumor margin, as confirmed by spatial transcriptomics on CLM specimens. In a cohort of patients, a high infiltration of SERPINB2+ cells independently associated with longer disease-free survival (DFS; P = 0.033), whereas a high density of GPNMB+ cells correlated with shorter DFS (P = 0.012) and overall survival (P = 0.002). Cell-cell interaction analysis defined opposing roles for MoMÏ and TAMs, suggesting that SERPINB2+ and GPNMB+ cells are discrete populations of MÏ and may be exploited for further translation to an immune-based stratification tool. This study provides evidence of how multi-omics approaches can identify nonredundant, clinically relevant markers for further translation to immune-based patient stratification tools and therapeutic targets. GPNMB has been shown to set MÏ in an immunosuppressive mode. Our high dimensional analyses provide further evidence that GPNMB is a negative prognostic indicator and a potential player in the protumor function of MÏ populations.
Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Prognóstico , Macrófagos/metabolismo , Monócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Colorretais/metabolismo , Glicoproteínas de Membrana/metabolismoRESUMO
Quantitative analysis of Tumor Microenvironment (TME) provides prognostic and predictive information in several human cancers but, with few exceptions, it is not performed in daily clinical practice since it is extremely time-consuming. We recently showed that the morphology of Tumor Associated Macrophages (TAMs) correlates with outcome in patients with Colo-Rectal Liver Metastases (CLM). However, as for other TME components, recognizing and characterizing hundreds of TAMs in a single histopathological slide is unfeasible. To fasten this process, we explored a deep-learning based solution. We tested three Convolutional Neural Networks (CNNs), namely UNet, SegNet and DeepLab-v3, with three different segmentation strategies, semantic segmentation, pixel penalties and instance segmentation. The different experiments are compared according to the Intersection over Union (IoU), a metric describing the similarity between what CNN predicts as TAM and the ground truth, and the Symmetric Best Dice (SBD), which indicates the ability of CNN to separate different TAMs. UNet and SegNet showed intrinsic limitations in discriminating single TAMs (highest SBD 61.34±2.21), whereas DeepLab-v3 accurately recognized TAMs from the background (IoU 89.13±3.85) and separated different TAMs (SBD 79.00±3.72). This deep-learning pipeline to recognize TAMs in digital slides will allow the characterization of TAM-related metrics in the daily clinical practice, allowing the implementation of prognostic tools.
RESUMO
The peripheral nervous system and the immune system are critically involved in the surveillance of our body, having the ability to sense the environment, recognize danger signals and orchestrate an appropriate response. Despite the fact that these two systems have been historically considered autonomous entities, a large body of evidence has shown how they interact in many homeostatic responses and how these interactions are critically involved in pathologic contexts too, including inflammation, infection and autoimmunity. In the context of cancer, where it is already known that inflammation plays a key role, the cross-regulation of immune cells and neural components is still somewhat unexplored. Detailed characterization of the mediators and pathways involved in neuro-immune interactions in cancer is expected to provide insights into the pathogenesis of disease and open new possibilities related to therapeutic strategies.
Assuntos
Sistema Imunitário/fisiologia , Infecções/imunologia , Neoplasias/imunologia , Sistema Nervoso Periférico/imunologia , Animais , Autoimunidade , Homeostase , Humanos , Inflamação , Neuroimunomodulação , Receptor Cross-Talk , Transdução de SinaisRESUMO
Pancreatic adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death, and soon to become the second. There is an urgent need of variables associated to specific pancreatic pathologies to help preoperative differential diagnosis and patient profiling. Pancreatic juice is a relatively unexplored body fluid, which, due to its close proximity to the tumor site, reflects changes in the surrounding tissue. Here we describe in detail the intraoperative collection procedure. Unfortunately, translating pancreatic juice collection to murine models of PDAC, to perform mechanistic studies, is technically very challenging. Tumor interstitial fluid (TIF) is the extracellular fluid, outside blood and plasma, which bathes tumor and stromal cells. Similarly to pancreatic juice, for its property to collect and concentrate molecules that are found diluted in plasma, TIF can be exploited as an indicator of microenvironmental alterations and as a valuable source of disease-associated biomarkers. Since TIF is not readily accessible, various techniques have been proposed for its isolation. We describe here two simple and technically undemanding methods for its isolation: tissue centrifugation and tissue elution.
Assuntos
Adenocarcinoma/patologia , Líquido Extracelular/metabolismo , Suco Pancreático/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Adenocarcinoma/sangue , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Metabolômica , Camundongos , Neoplasias Pancreáticas/sangue , Espectroscopia de Prótons por Ressonância MagnéticaRESUMO
It has long been known that in vitro polarized macrophages differ in morphology. Stemming from a conventional immunohistology observation, we set out to test the hypothesis that morphology of tumor-associated macrophages (TAMs) in colorectal liver metastasis (CLM) represents a correlate of functional diversity with prognostic significance. Density and morphological metrics of TAMs were measured and correlated with clinicopathological variables. While density of TAMs did not correlate with survival of CLM patients, the cell area identified small (S-TAM) and large (L-TAM) macrophages that were associated with 5-yr disease-free survival rates of 27.8% and 0.2%, respectively (P < 0.0001). RNA sequencing of morphologically distinct macrophages identified LXR/RXR as the most enriched pathway in large macrophages, with up-regulation of genes involved in cholesterol metabolism, scavenger receptors, MERTK, and complement. In single-cell analysis of mononuclear phagocytes from CLM tissues, S-TAM and L-TAM signatures were differentially enriched in individual clusters. These results suggest that morphometric characterization can serve as a simple readout of TAM diversity with strong prognostic significance.
Assuntos
Neoplasias Colorretais/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Macrófagos Associados a Tumor/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Polaridade Celular/imunologia , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sequência de RNA , Taxa de Sobrevida , Macrófagos Associados a Tumor/metabolismoRESUMO
Better understanding of pancreatic diseases, including pancreatic ductal adenocarcinoma (PDAC), is an urgent medical need, with little advances in preoperative differential diagnosis, preventing rational selection of therapeutic strategies. The clinical management of pancreatic cancer patients would benefit from the identification of variables distinctively associated with the multiplicity of pancreatic disorders. We investigated, by 1H nuclear magnetic resonance, the metabolomic fingerprint of pancreatic juice (the biofluid that collects pancreatic products) in 40 patients with different pancreatic diseases. Metabolic variables discriminated PDAC from other less aggressive pancreatic diseases and identified metabolic clusters of patients with distinct clinical behaviors. PDAC specimens were overtly glycolytic, with significant accumulation of lactate, which was probed as a disease-specific variable in pancreatic juice from a larger cohort of 106 patients. In human PDAC sections, high expression of the glucose transporter GLUT-1 correlated with tumor grade and a higher density of PD-1+ T cells, suggesting their accumulation in glycolytic tumors. In a preclinical model, PD-1+ CD8 tumor-infiltrating lymphocytes differentially infiltrated PDAC tumors obtained from cell lines with different metabolic consumption, and tumors metabolically rewired by knocking down the phosphofructokinase (Pfkm) gene displayed a decrease in PD-1+ cell infiltration. Collectively, we introduced pancreatic juice as a valuable source of metabolic variables that could contribute to differential diagnosis. The correlation of metabolic markers with immune infiltration suggests that upfront evaluation of the metabolic profile of PDAC patients could foster the introduction of immunotherapeutic approaches for pancreatic cancer.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/patologia , Linfócitos do Interstício Tumoral/imunologia , Metaboloma , Suco Pancreático/metabolismo , Neoplasias Pancreáticas/patologia , Receptor de Morte Celular Programada 1/metabolismo , Idoso , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Células Cultivadas , Técnicas de Cocultura , Feminino , Transportador de Glucose Tipo 1/metabolismo , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Taxa de SobrevidaRESUMO
Macrophages are essential elements in the tumor microenvironment, where they can promote tumor growth but also influence the efficacy of anticancer strategies. In conventional therapies, chemotherapy and radiotherapy, TAMs play a dichotomous role, contributing to antitumor activity or hindering the efficacy of cytoreductive therapies. Macrophages express checkpoint ligands and are therefore targets of immunotherapy approaches based on checkpoint inhibitors. Targeted therapies with monoclonal antibodies elicit TAMs to engage in antitumor functions such as antibody-dependent phagocytosis through the activation of Fc receptors. New approaches to exploit macrophage effector functions induced by therapeutic antibodies are under investigation. Finally, strategies aimed at targeting TAM recruitment, survival and functional polarization are advancing towards the clinic. Collectively, TAM-centered strategies will hopefully complement conventional and unconventional anticancer therapies to achieve improved therapeutic benefit.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoterapia/métodos , Macrófagos/imunologia , Neoplasias/terapia , Microambiente Tumoral/efeitos dos fármacos , Animais , Anticorpos Monoclonais Humanizados/imunologia , Humanos , Macrófagos/classificação , Macrófagos/metabolismo , Modelos Imunológicos , Neoplasias/imunologia , Neoplasias/metabolismo , Microambiente Tumoral/imunologiaRESUMO
Tumor-associated macrophages (TAMs) provide a nurturing microenvironment for metastasis and are concomitantly key determinants of the efficacy of anticancer strategies. TAM represent an extremely heterogeneous population in terms of cell morphology, functions, and tissue localization. Colorectal liver metastases (CLM) display a high heterogeneity, responsible for a wide array of clinical presentations and responsiveness to treatments. In the era of precision medicine, there is a critical need of reliable prognostic markers to improve patient stratification, and, for their predominance in metastatic tissues, TAMs are emerging as promising candidates.
RESUMO
The burgeoning field of cancer immunology demands a change in the paradigm of cancer patient management. The understanding of the course of a given malignant disease should also include the host immune system as one of the key factors in determining the patient's prognosis. Surgical and medical oncologists need to understand the basic and advanced applications of immunotherapies, which are rapidly evolving, and are nowadays an integral part of the armamentarium for the treatment of cancer patients. In the present work, we review the current knowledge concerning the immune landscape of colorectal cancer (CRC) patients with liver metastases, as recently discovered.
Assuntos
Adenocarcinoma/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pancreáticas/terapia , Radiocirurgia/métodos , Adenocarcinoma/diagnóstico , Adenocarcinoma/imunologia , Biomarcadores Tumorais/sangue , Antígeno CA-19-9/sangue , Quimiorradioterapia/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/imunologia , Fatores de Tempo , Resultado do TratamentoRESUMO
B-cell responses are emerging as critical regulators of cancer progression. In this study, we investigated the role of B lymphocytes in the microenvironment of human pancreatic ductal adenocarcinoma (PDAC), in a retrospective consecutive series of 104 PDAC patients and in PDAC preclinical models. Immunohistochemical analysis revealed that B cells occupy two histologically distinct compartments in human PDAC, either scatteringly infiltrating (CD20-TILs), or organized in tertiary lymphoid tissue (CD20-TLT). Only when retained within TLT, high density of B cells predicted longer survival (median survival 16.9 mo CD20-TLThi vs. 10.7 mo CD20-TLTlo; p = 0.0085). Presence of B cells within TLT associated to a germinal center (GC) immune signature, correlated with CD8-TIL infiltration, and empowered their favorable prognostic value. Immunotherapeutic vaccination of spontaneously developing PDAC (KrasG12D-Pdx1-Cre) mice with α-enolase (ENO1) induced formation of TLT with active GCs and correlated with increased recruitment of T lymphocytes, suggesting induction of TLT as a strategy to favor mobilization of immune cells in PDAC. In contrast, in an implanted tumor model devoid of TLT, depletion of B cells with an anti-CD20 antibody reinstated an antitumor immune response. Our results highlight B cells as an essential element of the microenvironment of PDAC and identify their spatial organization as a key regulator of their antitumor function. A mindfully evaluation of B cells in human PDAC could represent a powerful prognostic tool to identify patients with distinct clinical behaviors and responses to immunotherapeutic strategies.
RESUMO
Recruitment of immune and inflammatory cells in the microenvironment of solid tumors is highly heterogeneous and follows patterns, varying according to the organ of origin and stage of disease, with critical roles in the process of cancer onset and progression. While adaptive cells are endowed with anti-tumor activities, inflammatory components of the immune infiltrate orchestrate an immunosuppressive microenvironment that reveals ambivalent functions of the immune contexture in the tumor milieu. The balance between opposing pro-tumoral and anti-tumoral immune pathways, which occur concomitantly in the tumor microenvironment, and the regulatory networks of these phenomena have been the target of several immunotherapeutic strategies. While the scarcity of adaptive immune effectors in tumors correlates with dismal prognosis, the pathways of activation of tumor-specific lymphocytes are yet to be fully elucidated. Recently, the occurrence of tertiary lymphoid tissue was revealed to be critical in mediating the dynamics of T cell recruitment and local activation of immune cells in the tumor microenvironment. Thus, tertiary lymphoid tissue assessment and targeting emerge as a promising approach for the design of novel prognostic immune signatures and immunotherapeutic strategies. The immunological behavior of tertiary lymphoid tissue, its occurrence in the tumor immune microenvironment and its clinical relevance are discussed here.
Assuntos
Imunoterapia Adotiva , Tecido Linfoide/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Movimento Celular , Humanos , Terapia de Imunossupressão , Ativação Linfocitária , Neoplasias/terapia , Linfócitos T/transplante , Microambiente Tumoral/imunologiaRESUMO
Immune-based strategies are the most promising treatments to improve cancer disease control. Early clinical trials are ongoing to test the safety and feasibility of immune-based therapies for gastrointestinal cancers. However, to date, immunotherapy has been only an experimental option for these diseases and a better understanding of their molecular, cellular, structural and clinical dissimilarities is crucial in the generation of tailored immunotherapeutic treatments. In this review, we will summarize the key mechanisms that regulate the action of immune system in cancer and the different immune-based approaches aimed at improving disease control in patients with advanced disease. We will then move on to discussing the current immunotherapeutic approaches in two types of gastrointestinal (colo-rectal and pancreatic) cancers, whose immune microenvironment has been lately object of intense analyses and has emerged as an important determinant of clinical outcome.