Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355066

RESUMO

Most invertebrate axons and small-caliber axons in mammalian peripheral nerves are unmyelinated but still ensheathed by glia. Here, we use Drosophila wrapping glia to study the development and function of non-myelinating axon ensheathment, which is poorly understood. Selective ablation of these glia from peripheral nerves severely impaired larval locomotor behavior. In an in vivo RNA interference screen to identify glial genes required for axon ensheathment, we identified the conserved receptor tyrosine kinase Discoidin domain receptor (Ddr). In larval peripheral nerves, loss of Ddr resulted in severely reduced ensheathment of axons and reduced axon caliber, and we found a strong dominant genetic interaction between Ddr and the type XV/XVIII collagen Multiplexin (Mp), suggesting that Ddr functions as a collagen receptor to drive axon wrapping. In adult nerves, loss of Ddr decreased long-term survival of sensory neurons and significantly reduced axon caliber without overtly affecting ensheathment. Our data establish essential roles for non-myelinating glia in nerve development, maintenance and function, and identify Ddr as a key regulator of axon-glia interactions during ensheathment and establishment of axon caliber.


Assuntos
Axônios , Proteínas de Drosophila , Animais , Receptores com Domínio Discoidina , Axônios/fisiologia , Neuroglia , Proteínas de Drosophila/genética , Nervos Periféricos , Drosophila , Mamíferos
2.
Development ; 143(8): 1351-62, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27095495

RESUMO

Neurons display a striking degree of functional and morphological diversity, and the developmental mechanisms that underlie diversification are of significant interest for understanding neural circuit assembly and function. We find that the morphology of Drosophila sensory neurons is diversified through a series of suppressive transcriptional interactions involving the POU domain transcription factors Pdm1 (Nubbin) and Pdm2, the homeodomain transcription factor Cut, and the transcriptional regulators Scalloped and Vestigial. Pdm1 and Pdm2 are expressed in a subset of proprioceptive sensory neurons and function to inhibit dendrite growth and branching. A subset of touch receptors show a capacity to express Pdm1/2, but Cut represses this expression and promotes more complex dendritic arbors. Levels of Cut expression are diversified in distinct sensory neurons by selective expression of Scalloped and Vestigial. Different levels of Cut impact dendritic complexity and, consistent with this, we show that Scalloped and Vestigial suppress terminal dendritic branching. This transcriptional hierarchy therefore acts to suppress alternative morphologies to diversify three distinct types of somatosensory neurons.


Assuntos
Dendritos , Proteínas de Drosophila/metabolismo , Células Receptoras Sensoriais/citologia , Fatores de Transcrição/metabolismo , Animais , Axônios , Drosophila , Proteínas de Drosophila/biossíntese , Proteínas de Homeodomínio/metabolismo , Neurogênese , Proteínas Nucleares/metabolismo , Fatores do Domínio POU/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/biossíntese , Proteínas de Sinalização YAP
3.
Curr Opin Neurobiol ; 79: 102689, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822142

RESUMO

The importance of glial cells has become increasingly apparent over the past 20 years, yet compared to neurons we still know relatively little about these essential cells. Most critical glial cell functions are conserved in Drosophila glia, often using the same key molecular players as their vertebrate counterparts. The relative simplicity of the Drosophila nervous system, combined with a vast array of powerful genetic tools, allows us to further dissect the molecular composition and functional roles of glia in ways that would be much more cumbersome or not possible in higher vertebrate systems. Importantly, Drosophila genetics allow for in vivo manipulation, and their transparent body wall enables in vivo imaging of glia in intact animals throughout early development. Here we discuss recent advances in Drosophila glial development detailing how these cells take on their mature morphologies and interact with neurons to perform their important functional roles in the nervous system.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Neuroglia/fisiologia , Neurônios/fisiologia , Proteínas de Drosophila/genética , Vertebrados
4.
J Cell Biol ; 222(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36399182

RESUMO

Maintaining long, energetically demanding axons throughout the life of an animal is a major challenge for the nervous system. Specialized glia ensheathe axons and support their function and integrity throughout life, but glial support mechanisms remain poorly defined. Here, we identified a collection of secreted and transmembrane molecules required in glia for long-term axon survival in vivo. We showed that the majority of components of the TGFß superfamily are required in glia for sensory neuron maintenance but not glial ensheathment of axons. In the absence of glial TGFß signaling, neurons undergo age-dependent degeneration that can be rescued either by genetic blockade of Wallerian degeneration or caspase-dependent death. Blockade of glial TGFß signaling results in increased ATP in glia that can be mimicked by enhancing glial mitochondrial biogenesis or suppressing glial monocarboxylate transporter function. We propose that glial TGFß signaling supports axon survival and suppresses neurodegeneration through promoting glial metabolic support of neurons.


Assuntos
Axônios , Neuroglia , Fator de Crescimento Transformador beta , Animais , Axônios/metabolismo , Neuroglia/metabolismo , Nervos Periféricos/citologia , Células Receptoras Sensoriais , Fator de Crescimento Transformador beta/metabolismo , Drosophila melanogaster , Biogênese de Organelas , Transportadores de Ácidos Monocarboxílicos/metabolismo
5.
Neuron ; 109(3): 473-487.e5, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33296670

RESUMO

Nervous system injury and disease have broad effects on the functional connectivity of the nervous system, but how injury signals are spread across neural circuits remains unclear. We explored how axotomy changes the physiology of severed axons and adjacent uninjured "bystander" neurons in a simple in vivo nerve preparation. Within hours after injury, we observed suppression of axon transport in all axons, whether injured or not, and decreased mechano- and chemosensory signal transduction in uninjured bystander neurons. Unexpectedly, we found the axon death molecule dSarm, but not its NAD+ hydrolase activity, was required cell autonomously for these early changes in neuronal cell biology in bystander neurons, as were the voltage-gated calcium channel Cacophony (Cac) and the mitogen-activated protein kinase (MAPK) signaling cascade. Bystander neurons functionally recovered at later time points, while severed axons degenerated via α/Armadillo/Toll-interleukin receptor homology domain (dSarm)/Axundead signaling, and independently of Cac/MAPK. Interestingly, suppression of bystander neuron function required Draper/MEGF10 signaling in glia, indicating glial cells spread injury signals and actively suppress bystander neuron function. Our work identifies a new role for dSarm and glia in suppression of bystander neuron function after injury and defines two genetically and temporally separable phases of dSarm signaling in the injured nervous system.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Comunicação Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Animais , Axotomia , Canais de Cálcio/metabolismo , Drosophila
6.
J Cell Biol ; 203(3): 395-405, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24217617

RESUMO

Glia serve many important functions in the mature nervous system. In addition, these diverse cells have emerged as essential participants in nearly all aspects of neural development. Improved techniques to study neurons in the absence of glia, and to visualize and manipulate glia in vivo, have greatly expanded our knowledge of glial biology and neuron-glia interactions during development. Exciting studies in the last decade have begun to identify the cellular and molecular mechanisms by which glia exert control over neuronal circuit formation. Recent findings illustrate the importance of glial cells in shaping the nervous system by controlling the number and connectivity of neurons.


Assuntos
Neuroglia/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Drosophila , Humanos , Células-Tronco Neurais/fisiologia , Neurogênese
7.
Development ; 136(7): 1049-61, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19270170

RESUMO

Neurons are one of the most morphologically diverse cell types, in large part owing to their intricate dendrite branching patterns. Dendrites are structures that are specialized to receive and process inputs in neurons, thus their specific morphologies reflect neural connectivity and influence information flow through circuits. Recent studies in Drosophila on the molecular basis of dendrite diversity, dendritic guidance, the cell biology of dendritic branch patterning and territory formation have identified numerous intrinsic and extrinsic cues that shape diverse features of dendrites. As we discuss in this review, many of the mechanisms that are being elucidated show conservation in diverse systems.


Assuntos
Dendritos/fisiologia , Dendritos/ultraestrutura , Drosophila/crescimento & desenvolvimento , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/fisiologia , Drosophila/genética , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Genes de Insetos , Modelos Neurológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Sistema Nervoso/crescimento & desenvolvimento , Transdução de Sinais , Transcrição Gênica
8.
Neuron ; 58(1): 1-3, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18400154

RESUMO

In this issue of Neuron, two papers provide new insights into roles for local cadherin-based interactions during axon targeting in the Drosophila visual system. Using high-resolution analyses, Chen and Clandinin identify nonautonomous roles for the atypical cadherin Flamingo during photoreceptor targeting, while Nern et al. demonstrate that local cell type-specific roles for N-cadherin control layer-specific targeting of lamina neurons.


Assuntos
Caderinas/fisiologia , Vias Visuais/crescimento & desenvolvimento , Animais , Drosophila , Humanos , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Visão Ocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA