Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Anal Chem ; 90(22): 13591-13599, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30339362

RESUMO

Freeze-drying is a well-established technique to improve the stability of biopharmaceuticals which are unstable in aqueous solution. To obtain an elegant dried product appearance, the temperature at the moving sublimation interface Ti should be kept below the critical product temperature Ti,crit during primary drying. The static temperature sensors applied in batch freeze-drying provide unreliable Ti data due to their invasive character. In addition, these sensors are incompatible with the continuous freeze-drying concept based on spinning of the vials during freezing, leading to a thin product layer spread over the entire inner vial wall. During continuous freeze-drying, the sublimation front moves from the inner side of the vial toward the glass wall, offering the unique opportunity to monitor Ti via noncontact inline thermal imaging. Via Fourier's law of thermal conduction, the temperature gradient over the vial wall and ice layer was quantified, which allowed the exact measurement of Ti during the entire primary drying step. On the basis of the obtained thermal images, the infrared (IR) energy transfer was computed via the Stefan-Boltzmann law and the dried product mass transfer resistance ( Rp) profile was obtained. This procedure allows the determination of the optimal dynamic IR heater temperature profile for the continuous freeze-drying of any product. In addition, the end point of primary drying was detected via thermal imaging and confirmed by inline near-infrared (NIR) spectroscopy. Both applications show that thermal imaging is a suitable and promising process analytical tool for noninvasive temperature measurements during continuous freeze-drying, with the potential for inline process monitoring and control.


Assuntos
Liofilização , Dessecação , Tecnologia Farmacêutica , Temperatura
2.
Anal Chem ; 90(7): 4354-4362, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29528218

RESUMO

Near-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing. The chemical images of freeze-dried mannitol samples were resolved via multivariate curve resolution, allowing us to visualize the distribution of mannitol solid forms throughout the entire cake. Second, a mannitol-sucrose formulation was lyophilized with variable drying times for inducing changes in water content. Analyzing the corresponding chemical images via principal component analysis, vial-to-vial variations as well as within-vial inhomogeneity in water content could be detected. Furthermore, a partial least-squares regression model was constructed for quantifying the water content in each pixel of the chemical images. It was hence concluded that NIR-CI is inherently a most promising PAT tool for continuously monitoring freeze-dried samples. Although some practicalities are still to be solved, this analytical technique could be applied in-line for CQA evaluation and for detecting the drying end point.

3.
Pharmaceutics ; 13(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34959449

RESUMO

The pharmaceutical industry is progressing toward the development of more continuous manufacturing techniques. At the same time, the industry is striving toward more process understanding and improved process control, which requires the implementation of process analytical technology tools (PAT). For the purpose of drying biopharmaceuticals, a continuous spin freeze-drying technology for unit doses was developed, which is based on creating thin layers of product by spinning the solution during the freezing step. Drying is performed under vacuum using infrared heaters to provide energy for the sublimation process. This approach reduces drying times by more than 90% compared to conventional batch freeze-drying. In this work, a new methodology is presented using near-infrared (NIR) spectroscopy to study the desorption kinetics during the secondary drying step of the continuous spin freeze-drying process. An inline PLS-based NIR calibration model to predict the residual moisture content of a standard formulation (i.e., 10% sucrose) was constructed and validated. This model was then used to evaluate the effect of different process parameters on the desorption rate. Product temperature, which was controlled by a PID feedback mechanism of the IR heaters, had the highest positive impact on the drying rate during secondary drying. Using a higher cooling rate during spin freezing was found to significantly increase the desorption rate as well. A higher filling volume had a smaller negative effect on the drying rate while the chamber pressure during drying was found to have no significant effect in the range between 10 and 30 Pa.

4.
Pharmaceutics ; 13(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959357

RESUMO

During the spin freezing step of a recently developed continuous spin freeze-drying technology, glass vials are rapidly spun along their longitudinal axis. The aqueous drug formulation subsequently spreads over the inner vial wall, while a cold gas flow is used for cooling and freezing the product. In this work, a mechanistic model was developed describing the energy transfer during each phase of spin freezing in order to predict the vial and product temperature change over time. The uncertainty in the model input parameters was included via uncertainty analysis, while global sensitivity analysis was used to assign the uncertainty in the model output to the different sources of uncertainty in the model input. The model was verified, and the prediction interval corresponded to the vial temperature profiles obtained from experimental data, within the limits of the uncertainty interval. The uncertainty in the model prediction was mainly explained (>96% of uncertainty) by the uncertainty in the heat transfer coefficient, the gas temperature measurement, and the equilibrium temperature. The developed model was also applied in order to set and control a desired vial temperature profile during spin freezing. Applying this model in-line to a continuous freeze-drying process may alleviate some of the disadvantages related to batch freeze-drying, where control over the freezing step is generally poor.

5.
Int J Pharm ; 570: 118631, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31442499

RESUMO

The applicability of DCCs in a continuous freeze-drying concept based on spin freezing and infrared heating was evaluated. Maximum applicable filling volume was evaluated. Secondly the mechanistic model for the determination of the optimal dynamic infrared heater temperature during primary drying of regular vials during continuous freeze-drying was adapted and validated for DCCs. Finally, since spin frozen DCCs may be more prone to choked flow due to the small neck opening and the large product surface area, it was evaluated if the choked flow constraints in the model could be increased to improve the efficiency of the drying process. The experiments revealed that the maximum allowable filling volume for spin freezing at the current experimental setup was 0.8 ml which is 80% of the maximum filling volume. Applying the mechanistic model for the determination of the optimal dynamic infrared heater temperature during primary drying of the studied DCCs and experimentally verifying this determined infrared heater temperature trajectory resulted in an elegant freeze-dried product without visual signs of collapse. The experimentally determined primary drying time agreed with the one calculated based on the mechanistic model. Choked flow did not occur during the continuous freeze-drying of DCCs containing 3% sucrose or 3% mannitol.


Assuntos
Preparações Farmacêuticas/química , Composição de Medicamentos/métodos , Liofilização/métodos , Congelamento , Manitol/química , Sacarose/química , Temperatura
6.
Opt Express ; 16(17): 12794-805, 2008 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-18711519

RESUMO

We describe a simple terahertz (THz) time domain spectrometer with a bandwidth extending up to 7.5 THz. We show that by keeping the generation and detection crystals close to each other a high signal-to-noise ratio (SNR) can be achieved without using lock-in detection and dry nitrogen flushing. The observed spectra show very good agreement with the spectra calculated based on a simple model which includes phase matching and absorption in the generation and detection crystals. Using this set-up we have measured the absorption lines in D-tartaric acid from 0.5 THz up to 7 THz. We show that the high frequency region > 3 THz is the better choice to measure small changes in the water content of a hygroscopic sample compared to the low frequency region.


Assuntos
Iluminação/instrumentação , Espectrofotometria Infravermelho/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos , Iluminação/métodos , Micro-Ondas , Espectrofotometria Infravermelho/métodos
7.
Eur J Pharm Biopharm ; 123: 108-116, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29258911

RESUMO

Pharmaceutical batch freeze-drying is commonly used to improve the stability of biological therapeutics. The primary drying step is regulated by the dynamic settings of the adaptable process variables, shelf temperature Ts and chamber pressure Pc. Mechanistic modelling of the primary drying step leads to the optimal dynamic combination of these adaptable process variables in function of time. According to Good Modelling Practices, a Global Sensitivity Analysis (GSA) is essential for appropriate model building. In this study, both a regression-based and variance-based GSA were conducted on a validated mechanistic primary drying model to estimate the impact of several model input parameters on two output variables, the product temperature at the sublimation front Ti and the sublimation rate msub. Ts was identified as most influential parameter on both Ti and msub, followed by Pc and the dried product mass transfer resistance αRp for Ti and msub, respectively. The GSA findings were experimentally validated for msub via a Design of Experiments (DoE) approach. The results indicated that GSA is a very useful tool for the evaluation of the impact of different process variables on the model outcome, leading to essential process knowledge, without the need for time-consuming experiments (e.g., DoE).


Assuntos
Preparações Farmacêuticas/química , Tecnologia Farmacêutica/métodos , Química Farmacêutica/métodos , Liofilização/métodos , Pressão , Sensibilidade e Especificidade , Temperatura
8.
Eur J Pharm Biopharm ; 127: 159-170, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29476909

RESUMO

The continuous freeze-drying concept based on spinning the vials during freezing and on non-contact energy transfer via infrared (IR) radiation during drying, improves process efficiency and product quality (uniformity) compared to conventional batch freeze-drying. Automated control of this process requires the fundamental mechanistic modelling of each individual process step. Therefore, a framework is presented for the modelling and control of the continuous primary drying step based on non-contact IR radiation. The IR radiation emitted by the radiator filaments passes through various materials before finally reaching the spin frozen vial. The energy transfer was computed by combining physical laws with Monte Carlo simulations and was verified with experimental data. The influence of the transmission properties of various materials on the emitted IR radiation profile was evaluated. These results assist in the selection of proper materials which could serve as IR window in the continuous freeze-drying prototype. The modelling framework presented in this paper fits the model-based design approach used for the development of this prototype and shows the potential benefits of this design strategy by establishing the desired engineering parameters and by enabling the engineer to assess mechanical tolerances and material options.


Assuntos
Liofilização/métodos , Composição de Medicamentos/métodos , Transferência de Energia , Congelamento , Raios Infravermelhos , Método de Monte Carlo
9.
Int J Pharm ; 539(1-2): 1-10, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29366945

RESUMO

Recently, a continuous freeze-drying process for the production of unit doses was presented and evaluated. In this concept, the freezing step is modified compared to traditional batch freeze-drying, as glass vials filled with a liquid formulation, are rotated around their longitudinal axis while cooled and frozen with a cold, sterile and inert gas (i.e. spin freezing). Finally, a thin frozen product layer spread over the entire vial wall is achieved. The aim of this paper is twofold: firstly, the relation between the rotation velocity and the relative difference between top and bottom of the frozen product layer thickness was determined for different vial types. Secondly, the impact of shear and centrifugal forces generated during spinning was examined, to find out whether they might cause pharmaceutical instability and sedimentation, respectively. Mechanistic and experimental evaluation showed that shear has no effect on proteins. Calculations showed that the sedimentation and diffusion velocity is too low to cause inhomogeneity in the product layer. In addition, Global Sensitivity Analysis (GSA) and Uncertainty Analysis (UA) were performed in order to account for the uncertainty of the used mechanistic model.


Assuntos
Composição de Medicamentos/métodos , Liofilização/métodos , Fenômenos Físicos , Tecnologia Farmacêutica/métodos , Temperatura
10.
J Pharm Sci ; 106(1): 71-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27321237

RESUMO

Recently, an innovative continuous freeze-drying concept for unit doses was proposed, based on spinning the vials during freezing. An efficient heat transfer during drying is essential to continuously process these spin frozen vials. Therefore, the applicability of noncontact infrared (IR) radiation was examined. The impact of several process and formulation variables on the mass of sublimed ice after 15 min of primary drying (i.e., sublimation rate) and the total drying time was examined. Two experimental designs were performed in which electrical power to the IR heaters, distance between the IR heaters and the spin frozen vial, chamber pressure, product layer thickness, and 5 model formulations were included as factors. A near-infrared spectroscopy method was developed to determine the end point of primary and secondary drying. The sublimation rate was mainly influenced by the electrical power to the IR heaters and the distance between the IR heaters and the vial. The layer thickness had the largest effect on total drying time. The chamber pressure and the 5 model formulations had no significant impact on sublimation rate and total drying time, respectively. This study shows that IR radiation is suitable to provide the energy during the continuous processing of spin frozen vials.


Assuntos
Liofilização/métodos , Algoritmos , Composição de Medicamentos/instrumentação , Composição de Medicamentos/métodos , Desenho de Equipamento , Excipientes/química , Liofilização/instrumentação , Temperatura Alta , Raios Infravermelhos , Condutividade Térmica
11.
Eur J Pharm Biopharm ; 114: 11-21, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28089785

RESUMO

Conventional pharmaceutical freeze-drying is an inefficient and expensive batch-wise process, associated with several disadvantages leading to an uncontrolled end product variability. The proposed continuous alternative, based on spinning the vials during freezing and on optimal energy supply during drying, strongly increases process efficiency and improves product quality (uniformity). The heat transfer during continuous drying of the spin frozen vials is provided via non-contact infrared (IR) radiation. The energy transfer to the spin frozen vials should be optimised to maximise the drying efficiency while avoiding cake collapse. Therefore, a mechanistic model was developed which allows computing the optimal, dynamic IR heater temperature in function of the primary drying progress and which, hence, also allows predicting the primary drying endpoint based on the applied dynamic IR heater temperature. The model was validated by drying spin frozen vials containing the model formulation (3.9mL in 10R vials) according to the computed IR heater temperature profile. In total, 6 validation experiments were conducted. The primary drying endpoint was experimentally determined via in-line near-infrared (NIR) spectroscopy and compared with the endpoint predicted by the model (50min). The mean ratio of the experimental drying time to the predicted value was 0.91, indicating a good agreement between the model predictions and the experimental data. The end product had an elegant product appearance (visual inspection) and an acceptable residual moisture content (Karl Fischer).


Assuntos
Dessecação/métodos , Liofilização/métodos , Algoritmos , Calibragem , Composição de Medicamentos , Transferência de Energia , Previsões , Raios Infravermelhos , Modelos Químicos , Melhoria de Qualidade , Reprodutibilidade dos Testes , Espectroscopia de Luz Próxima ao Infravermelho , Temperatura
12.
Int J Pharm ; 532(1): 185-193, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28887221

RESUMO

In the pharmaceutical industry, traditional freeze-drying of unit doses is a batch-wise process associated with many disadvantages. To overcome these disadvantages and to guarantee a uniform product quality and high process efficiency, a continuous freeze-drying process is developed and evaluated. The main differences between the proposed continuous freeze-drying process and traditional freeze-drying can be found firstly in the freezing step during which the vials are rotated around their longitudinal axis (spin freezing), and secondly in the drying step during which the energy for sublimation and desorption is provided through the vial wall by conduction via an electrical heating pad. To obtain a more efficient drying process, the energy transfer has to be optimised without exceeding the product and process limits (e.g. cake collapse, choked flow). Therefore, a mechanistic model describing primary drying during continuous lyophilisation of unit doses based on conduction via heating pads was developed allowing the prediction of the optimal dynamic power input and temperature output of the electric heating pads. The model was verified by experimentally testing the optimal dynamic primary drying conditions calculated for a model formulation. The primary drying endpoint of the model formulation was determined via in-line NIR spectroscopy. This endpoint was then compared with the predicted model based endpoint. The mean ratio between the experimental and model based predicted drying time for six verification runs was 1.05±0.07, indicating a good accordance between the model and the experimental data.


Assuntos
Liofilização/métodos , Modelos Teóricos , Dessecação , Temperatura
13.
Eur J Pharm Biopharm ; 121: 32-41, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28927638

RESUMO

Traditional pharmaceutical freeze-drying is an inefficient batch process often applied to improve the stability of biopharmaceutical drug products. The freeze-drying process is regulated by the (dynamic) settings of the adaptable process parameters shelf temperature Ts and chamber pressure Pc. Mechanistic modelling of the primary drying step allows the computation of the optimal combination of Ts and Pc in function of the primary drying time. In this study, an uncertainty analysis was performed on the mechanistic primary drying model to construct the dynamic Design Space for the primary drying step of a freeze-drying process, allowing to quantitatively estimate and control the risk of cake collapse (i.e., the Risk of Failure (RoF)). The propagation of the error on the estimation of the thickness of the dried layer Ldried as function of primary drying time was included in the uncertainty analysis. The constructed dynamic Design Space and the predicted primary drying endpoint were experimentally verified for different RoF acceptance levels (1%, 25%, 50% and 99% RoF), defined as the chance of macroscopic cake collapse in one or more vials. An acceptable cake structure was only obtained for the verification runs with a preset RoF of 1% and 25%. The run with the nominal values for the input variables (RoF of 50%) led to collapse in a significant number of vials. For each RoF acceptance level, the experimentally determined primary drying endpoint was situated below the computed endpoint, with a certainty of 99%, ensuring sublimation was finished before secondary drying was started. The uncertainty on the model input parameters demonstrates the need of the uncertainty analysis for the determination of the dynamic Design Space to quantitatively estimate the risk of batch rejection due to cake collapse.


Assuntos
Preparações Farmacêuticas/química , Liofilização/métodos , Pressão , Medição de Risco/métodos , Temperatura , Incerteza
14.
Eur J Pharm Biopharm ; 103: 71-83, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26992290

RESUMO

Large molecules, such as biopharmaceuticals, are considered the key driver of growth for the pharmaceutical industry. Freeze-drying is the preferred way to stabilise these products when needed. However, it is an expensive, inefficient, time- and energy-consuming process. During freeze-drying, there are only two main process variables to be set, i.e. the shelf temperature and the chamber pressure, however preferably in a dynamic way. This manuscript focuses on the essential use of uncertainty analysis for the determination and experimental verification of the dynamic primary drying Design Space for pharmaceutical freeze-drying. Traditionally, the chamber pressure and shelf temperature are kept constant during primary drying, leading to less optimal process conditions. In this paper it is demonstrated how a mechanistic model of the primary drying step gives the opportunity to determine the optimal dynamic values for both process variables during processing, resulting in a dynamic Design Space with a well-known risk of failure. This allows running the primary drying process step as time efficient as possible, hereby guaranteeing that the temperature at the sublimation front does not exceed the collapse temperature. The Design Space is the multidimensional combination and interaction of input variables and process parameters leading to the expected product specifications with a controlled (i.e., high) probability. Therefore, inclusion of parameter uncertainty is an essential part in the definition of the Design Space, although it is often neglected. To quantitatively assess the inherent uncertainty on the parameters of the mechanistic model, an uncertainty analysis was performed to establish the borders of the dynamic Design Space, i.e. a time-varying shelf temperature and chamber pressure, associated with a specific risk of failure. A risk of failure acceptance level of 0.01%, i.e. a 'zero-failure' situation, results in an increased primary drying process time compared to the deterministic dynamic Design Space; however, the risk of failure is under control. Experimental verification revealed that only a risk of failure acceptance level of 0.01% yielded a guaranteed zero-defect quality end-product. The computed process settings with a risk of failure acceptance level of 0.01% resulted in a decrease of more than half of the primary drying time in comparison with a regular, conservative cycle with fixed settings.


Assuntos
Liofilização , Incerteza , Varredura Diferencial de Calorimetria , Química Farmacêutica
15.
J Pharm Sci ; 99(2): 932-40, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19718772

RESUMO

We show how terahertz time-domain spectroscopy (THz-TDS) in the range from 0.1 to 7.5 THz can be used to identify the polymorphs of Mannitol, a frequently used excipient in the freeze drying industry. The results are subsequently used to study the effect that different freeze drying techniques have on the formation of these polymorphs. We find that, depending on the freeze-drying technique, the Mannitol either crystallizes in the delta form, or in a mixture of both the delta form and the beta form. The results are in agreement with conventional X-ray diffraction measurements used to identify the polymorphs.


Assuntos
Manitol/química , Espectroscopia Terahertz/métodos , Cristalização , Excipientes , Liofilização , Isomerismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA