Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Physiol Rev ; 102(1): 343-378, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280053

RESUMO

In mammals, the selective transformation of transient experience into stored memory occurs in the hippocampus, which develops representations of specific events in the context in which they occur. In this review, we focus on the development of hippocampal circuits and the self-organized dynamics embedded within them since the latter critically support the role of the hippocampus in learning and memory. We first discuss evidence that adult hippocampal cells and circuits are sculpted by development as early as during embryonic neurogenesis. We argue that these primary developmental programs provide a scaffold onto which later experience of the external world can be grafted. Next, we review the different sequences in the development of hippocampal cells and circuits at anatomical and functional levels. We cover a period extending from neurogenesis and migration to the appearance of phenotypic diversity within hippocampal cells and their wiring into functional networks. We describe the progressive emergence of network dynamics in the hippocampus, from sensorimotor-driven early sharp waves to sequences of place cells tracking relational information. We outline the critical turn points and discontinuities in that developmental journey, and close by formulating open questions. We propose that rewinding the process of hippocampal development helps understand the main organization principles of memory circuits.


Assuntos
Hipocampo/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Neurogênese/fisiologia , Animais , Humanos , Neurônios/fisiologia
2.
Nat Rev Neurosci ; 23(7): 395-410, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35422526

RESUMO

It is often thought that the construction of cortical circuits occurs as the result of an elegantly designed process that unfolds sequentially as an animal develops until adult functional networks emerge. In reality, cortical circuits are shaped by evolutionary mechanisms, changes in developmental programmes driven by neuronal activity or epigenetic mechanisms and the need to adapt to the external world, and must pass through several important phases and timely checkpoints as they form. Some cortical cell types serve multiple functions during this developmental journey and are then reused (or 'recycled') to perform different functions in the adult cortex. Understanding the different stages of the cortical construction process and taking into account the ways in which cellular functions change across time and space is therefore essential if we are to build a comprehensive framework of cortical wiring in both health and disease.


Assuntos
Neurônios , Animais , Humanos
3.
Opt Express ; 31(10): 15334-15341, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157637

RESUMO

We report a bending-insensitive multi-core fiber (MCF) for lensless endoscopy imaging with modified fiber geometry that enables optimal light coupling in and out of the individual cores. In a previously reported bending insensitive MCF (twisted MCF), the cores are twisted along the length of the MCF allowing for the development of flexible thin imaging endoscopes with potential applications in dynamic and freely moving experiments. However, for such twisted MCFs the cores are seen to have an optimum coupling angle which is proportional to their radial distance from the center of the MCF. This brings coupling complexity and potentially degrades the endoscope imaging capabilities. In this study, we demonstrate that by introducing a small section (1 cm) at two ends of the MCF, where all the cores are straight and parallel to the optical axis one can rectify the above coupling and output light issues of the twisted MCF, enabling the development of bend-insensitive lensless endoscopes.

4.
Proc Natl Acad Sci U S A ; 116(15): 7477-7482, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910984

RESUMO

The hippocampus plays a critical role in episodic memory: the sequential representation of visited places and experienced events. This function is mirrored by hippocampal activity that self organizes into sequences of neuronal activation that integrate spatiotemporal information. What are the underlying mechanisms of such integration is still unknown. Single cell activity was recently shown to combine time and distance information; however, it remains unknown whether a degree of tuning between space and time can be defined at the network level. Here, combining daily calcium imaging of CA1 sequence dynamics in running head-fixed mice and network modeling, we show that CA1 network activity tends to represent a specific combination of space and time at any given moment, and that the degree of tuning can shift within a continuum from 1 day to the next. Our computational model shows that this shift in tuning can happen under the control of the external drive power. We propose that extrinsic global inputs shape the nature of spatiotemporal integration in the hippocampus at the population level depending on the task at hand, a hypothesis which may guide future experimental studies.


Assuntos
Região CA1 Hipocampal/metabolismo , Memória/fisiologia , Modelos Neurológicos , Rede Nervosa/metabolismo , Neurônios/metabolismo , Animais , Região CA1 Hipocampal/citologia , Camundongos , Rede Nervosa/citologia , Neurônios/classificação
5.
Cereb Cortex ; 29(6): 2639-2652, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878074

RESUMO

The dentate gyrus, the entry gate to the hippocampus, comprises 3 types of glutamatergic cells, the granule, the mossy and the semilunar granule cells. Whereas accumulating evidence indicates that specification of subclasses of neocortical neurons starts at the time of their final mitotic divisions, when cellular diversity is specified in the Dentate Gyrus remains largely unknown. Here we show that semilunar cells, like mossy cells, originate from the earliest stages of developmental neurogenesis and that early born neurons form age-matched circuits with each other. Besides morphology, adult semilunar cells display characteristic electrophysiological features that differ from most neurons but are shared among early born granule cells. Therefore, an early birthdate specifies adult granule cell physiology and connectivity whereas additional factors may combine to produce morphological identity.


Assuntos
Giro Denteado/citologia , Giro Denteado/embriologia , Neurogênese , Neurônios/citologia , Neurônios/fisiologia , Animais , Giro Denteado/fisiologia , Camundongos
6.
PLoS Comput Biol ; 14(11): e1006551, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30388120

RESUMO

Spontaneous emergence of synchronized population activity is a characteristic feature of developing brain circuits. Recent experiments in the developing neo-cortex showed the existence of driver cells able to impact the synchronization dynamics when single-handedly stimulated. We have developed a spiking network model capable to reproduce the experimental results, thus identifying two classes of driver cells: functional hubs and low functionally connected (LC) neurons. The functional hubs arranged in a clique orchestrated the synchronization build-up, while the LC drivers were lately or not at all recruited in the synchronization process. Notwithstanding, they were able to alter the network state when stimulated by modifying the temporal activation of the functional clique or even its composition. LC drivers can lead either to higher population synchrony or even to the arrest of population dynamics, upon stimulation. Noticeably, some LC driver can display both effects depending on the received stimulus. We show that in the model the presence of inhibitory neurons together with the assumption that younger cells are more excitable and less connected is crucial for the emergence of LC drivers. These results provide a further understanding of the structural-functional mechanisms underlying synchronized firings in developing circuits possibly related to the coordinated activity of cell assemblies in the adult brain.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Encéfalo/citologia , Humanos , Neurogênese , Sinapses/fisiologia
7.
Cereb Cortex ; 27(9): 4649-4661, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922859

RESUMO

Coordinated neuronal activity is essential for the development of cortical circuits. GABAergic hub neurons that function in orchestrating early neuronal activity through a widespread net of postsynaptic partners are therefore critical players in the establishment of functional networks. Evidence for hub neurons was previously found in the hippocampus, but their presence in other cortical regions remains unknown. We examined this issue in the entorhinal cortex, an initiation site for coordinated activity in the neocortex and for the activity-dependent maturation of the entire entorhinal-hippocampal network. Using an unbiased approach that identifies "driver hub neurons" displaying a high number of functional links in living slices, we show that while almost half of the GABAergic cells single-handedly influence network dynamics, only a subpopulation of cells born in the MGE and composed of somatostatin-expressing neurons located in infragranular layers, spontaneously operate as "driver" hubs. This indicates that despite differences in the origin of interneuron diversity, the hippocampus and entorhinal cortex share similar developmental mechanisms for the establishment of functional circuits.


Assuntos
Córtex Entorrinal/embriologia , Córtex Entorrinal/fisiologia , Neurônios GABAérgicos/fisiologia , Animais , Hipocampo/embriologia , Interneurônios/fisiologia , Camundongos , Neocórtex/embriologia , Rede Nervosa
8.
Opt Express ; 24(2): 825-41, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832466

RESUMO

Rigid endoscopes like graded-index (GRIN) lenses are known tools in biological imaging, but it is conceptually difficult to miniaturize them. In this letter, we demonstrate an ultra-thin rigid endoscope with a diameter of only 125 µm. In addition, we identify a domain where two-photon endoscopic imaging with fs-pulse excitation is possible. We validate the ultra-thin rigid endoscope consisting of a few cm of graded-index multi-mode fiber by using it to acquire optically sectioned two-photon fluorescence endoscopic images of three-dimensional samples.


Assuntos
Diagnóstico por Imagem/instrumentação , Endoscópios , Fótons , Imageamento Tridimensional , Lasers
9.
Brain ; 138(Pt 10): 2875-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26280596

RESUMO

Epilepsy is characterized by recurrent seizures and brief, synchronous bursts called interictal spikes that are present in-between seizures and observed as transient events in EEG signals. While GABAergic transmission is known to play an important role in shaping healthy brain activity, the role of inhibition in these pathological epileptic dynamics remains unclear. Examining the microcircuits that participate in interictal spikes is thus an important first step towards addressing this issue, as the function of these transient synchronizations in either promoting or prohibiting seizures is currently under debate. To identify the microcircuits recruited in spontaneous interictal spikes in the absence of any proconvulsive drug or anaesthetic agent, we combine a chronic model of epilepsy with in vivo two-photon calcium imaging and multiunit extracellular recordings to map cellular recruitment within large populations of CA1 neurons in mice free to run on a self-paced treadmill. We show that GABAergic neurons, as opposed to their glutamatergic counterparts, are preferentially recruited during spontaneous interictal activity in the CA1 region of the epileptic mouse hippocampus. Although the specific cellular dynamics of interictal spikes are found to be highly variable, they are consistently associated with the activation of GABAergic neurons, resulting in a perisomatic inhibitory restraint that reduces neuronal spiking in the principal cell layer. Given the role of GABAergic neurons in shaping brain activity during normal cognitive function, their aberrant unbalanced recruitment during these transient events could have important downstream effects with clinical implications.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/patologia , Epilepsia do Lobo Temporal/patologia , Neurônios GABAérgicos/fisiologia , Inibição Neural/fisiologia , Vigília , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Neurônios GABAérgicos/efeitos dos fármacos , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Lineares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Agonistas Muscarínicos/toxicidade , Inibição Neural/efeitos dos fármacos , Pilocarpina/toxicidade
10.
Proc Natl Acad Sci U S A ; 110(9): 3567-72, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401510

RESUMO

Epilepsy is characterized by recurrent synchronizations of neuronal activity, which are both a cardinal clinical symptom and a debilitating phenomenon. Although the temporal dynamics of epileptiform synchronizations are well described at the macroscopic level using electrophysiological approaches, less is known about how spatially distributed microcircuits contribute to these events. It is important to understand the relationship between micro and macro network activity because the various mechanisms proposed to underlie the generation of such pathological dynamics are united by the assumption that epileptic activity is recurrent and hypersynchronous across multiple scales. However, quantitative analyses of epileptiform spatial dynamics with cellular resolution have been hampered by the difficulty of simultaneously recording from multiple neurons in lesioned, adult brain tissue. We have overcome this experimental limitation and used two-photon calcium imaging in combination with a functional clustering algorithm to uncover the functional network structure of the chronically epileptic dentate gyrus in the mouse pilocarpine model of temporal lobe epilepsy. We show that, under hyperexcitable conditions, slices from the epileptic dentate gyrus display recurrent interictal-like network events with a high diversity in the activity patterns of individual neurons. Analysis reveals that multiple functional clusters of spatially localized neurons comprise epileptic networks, and that network events are composed of the coactivation of variable subsets of these clusters, which show little repetition between events. Thus, these interictal-like recurrent macroscopic events are not necessarily recurrent when viewed at the microcircuit scale and instead display a patterned but variable structure.


Assuntos
Epilepsia/patologia , Epilepsia/fisiopatologia , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Neurônios/patologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Análise por Conglomerados , Masculino , Camundongos
11.
Neuron ; 112(6): 875-892, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38262413

RESUMO

Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.


Assuntos
Encéfalo , Neurônios , Humanos , Neurônios/fisiologia , Aprendizagem
12.
J Neurosci ; 32(19): 6688-98, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22573691

RESUMO

During early postnatal development, neuronal networks successively produce various forms of spontaneous patterned activity that provide key signals for circuit maturation. Initially, in both rodent hippocampus and neocortex, coordinated activity emerges in the form of synchronous plateau assemblies (SPAs) that are initiated by sparse groups of gap-junction-coupled oscillating neurons. Subsequently, SPAs are replaced by synapse-driven giant depolarizing potentials (GDPs). Whether these sequential changes in mechanistically distinct network activities correlate with modifications in single-cell properties is unknown. To determine this, we studied the morphophysiological fate of single SPA cells as a function of development. We focused on CA3 GABAergic interneurons, which are centrally involved in generating GDPs in the hippocampus. As the network matures, GABAergic neurons are engaged more in GDPs and less in SPAs. Using inducible genetic fate mapping, we show that the individual involvement of GABAergic neurons in SPAs is correlated to their temporal origin. In addition, we demonstrate that the SPA-to-GDP transition is paralleled by a remarkable maturation in the morphophysiological properties of GABAergic neurons. Compared with those involved in GDPs, interneurons participating in SPAs possess immature intrinsic properties, receive synaptic inputs spanning a wide amplitude range, and display large somata as well as membrane protrusions. Thus, a developmental switch in the morphophysiological properties of GABAergic interneurons as they progress from SPAs to GDPs marks the emergence of synapse-driven network oscillations.


Assuntos
Hipocampo/crescimento & desenvolvimento , Interneurônios/citologia , Interneurônios/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Feminino , Técnicas de Introdução de Genes , Hipocampo/citologia , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/citologia , Técnicas de Cultura de Órgãos
13.
Cell Rep ; 42(2): 112053, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36716148

RESUMO

The disruption of cortical assembly activity has been associated with anesthesia-induced loss of consciousness. However, the relationship between cortical assembly activity and the variations in consciousness associated with natural vigilance states remains unclear. Here, we address this by performing vigilance state-specific clustering analysis on 2-photon calcium imaging data from the sensorimotor cortex in combination with global electroencephalogram (EEG) microstate analysis derived from multi-EEG signals obtained over widespread cortical locations. We report no difference in the structure of assembly activity during quiet wakefulness (QW), non-rapid eye movement sleep (NREMs), or REMs, despite the latter two vigilance states being associated with significantly reduced levels of consciousness relative to QW. However, we describe a significant coordination between global EEG microstate dynamics and general local cortical assembly activity during periods of QW, but not sleep. These results suggest that the coordination of cortical assembly activity with global brain dynamics could be a key factor of sustained conscious experience.


Assuntos
Córtex Sensório-Motor , Vigília , Vigília/fisiologia , Eletroencefalografia , Encéfalo/fisiologia , Estado de Consciência/fisiologia , Sono/fisiologia
14.
STAR Protoc ; 4(4): 102760, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38041819

RESUMO

Two-photon calcium imaging is a powerful technique that has revolutionized our understanding of how neural circuit dynamics supports different behaviors and cognitive processes. However, performing imaging during development remains challenging. Here, we provide a protocol to image CA1 neurons in mouse pups as well as a pipeline of analysis to analyze and share the data. We describe steps for intracerebroventricular injection, cranial window surgery, two-photon calcium imaging, and analysis of imaging data. For complete details on the use and execution of this protocol, please refer to Dard et al.1 and Denis et al.2.


Assuntos
Cálcio , Hipocampo , Camundongos , Animais , Hipocampo/diagnóstico por imagem , Neurônios , Fótons
15.
Neuron ; 111(6): 888-902.e8, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608692

RESUMO

The adult CA1 region of the hippocampus produces coordinated neuronal dynamics with minimal reliance on its extrinsic inputs. By contrast, neonatal CA1 is tightly linked to externally generated sensorimotor activity, but the circuit mechanisms underlying early synchronous activity in CA1 remain unclear. Here, using a combination of in vivo and ex vivo circuit mapping, calcium imaging, and electrophysiological recordings in mouse pups, we show that early dynamics in the ventro-intermediate CA1 are under the mixed influence of entorhinal (EC) and thalamic (VMT) inputs. Both VMT and EC can drive internally generated synchronous events ex vivo. However, movement-related population bursts detected in vivo are exclusively driven by the EC. These differential effects on synchrony reflect the different intrahippocampal targets of these inputs. Hence, cortical and subcortical pathways act differently on the neonatal CA1, implying distinct contributions to the development of the hippocampal microcircuit and related cognitive maps.


Assuntos
Hipocampo , Neurônios , Animais , Camundongos , Hipocampo/fisiologia , Neurônios/fisiologia , Tálamo , Córtex Entorrinal/fisiologia , Região CA1 Hipocampal/fisiologia
16.
Nat Neurosci ; 26(9): 1555-1565, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653166

RESUMO

Spontaneous synchronous activity is a hallmark of developing brain circuits and promotes their formation. Ex vivo, synchronous activity was shown to be orchestrated by a sparse population of highly connected GABAergic 'hub' neurons. The recent development of all-optical methods to record and manipulate neuronal activity in vivo now offers the unprecedented opportunity to probe the existence and function of hub cells in vivo. Using calcium imaging, connectivity analysis and holographic optical stimulation, we show that single GABAergic, but not glutamatergic, neurons influence population dynamics in the barrel cortex of non-anaesthetized mouse pups. Single GABAergic cells mainly exert an inhibitory influence on both spontaneous and sensory-evoked population bursts. Their network influence scales with their functional connectivity, with highly connected hub neurons displaying the strongest impact. We propose that hub neurons function in tailoring intrinsic cortical dynamics to external sensory inputs.


Assuntos
Glândulas Endócrinas , Holografia , Animais , Camundongos , Interneurônios , Cálcio , Neurônios GABAérgicos
17.
J Neurosci ; 31(1): 34-45, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21209187

RESUMO

GABA depolarizes immature neurons because of a high [Cl(-)](i) and orchestrates giant depolarizing potential (GDP) generation. Zilberter and coworkers (Rheims et al., 2009; Holmgren et al., 2010) showed recently that the ketone body metabolite DL-3-hydroxybutyrate (DL-BHB) (4 mM), lactate (4 mM), or pyruvate (5 mM) shifted GABA actions to hyperpolarizing, suggesting that the depolarizing effects of GABA are attributable to inadequate energy supply when glucose is the sole energy source. We now report that, in rat pups (postnatal days 4-7), plasma D-BHB, lactate, and pyruvate levels are 0.9, 1.5, and 0.12 mM, respectively. Then, we show that DL-BHB (4 mM) and pyruvate (200 µM) do not affect (i) the driving force for GABA(A) receptor-mediated currents (DF(GABA)) in cell-attached single-channel recordings, (2) the resting membrane potential and reversal potential of synaptic GABA(A) receptor-mediated responses in perforated patch recordings, (3) the action potentials triggered by focal GABA applications, or (4) the GDPs determined with electrophysiological recordings and dynamic two-photon calcium imaging. Only very high nonphysiological concentrations of pyruvate (5 mM) reduced DF(GABA) and blocked GDPs. Therefore, DL-BHB does not alter GABA signals even at the high concentrations used by Zilberter and colleagues, whereas pyruvate requires exceedingly high nonphysiological concentrations to exert an effect. There is no need to alter conventional glucose enriched artificial CSF to investigate GABA signals in the developing brain.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Corpos Cetônicos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ácido Pirúvico/metabolismo , Ácido gama-Aminobutírico/farmacologia , Ácido 3-Hidroxibutírico/sangue , Ácido 3-Hidroxibutírico/farmacologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos/sangue , Bicuculina/farmacologia , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Bumetanida/farmacologia , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Técnicas In Vitro , Ácido Láctico/sangue , Masculino , Técnicas de Patch-Clamp/métodos , Ácido Pirúvico/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia
18.
Elife ; 112022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35856497

RESUMO

Early electrophysiological brain oscillations recorded in preterm babies and newborn rodents are initially mostly driven by bottom-up sensorimotor activity and only later can detach from external inputs. This is a hallmark of most developing brain areas, including the hippocampus, which, in the adult brain, functions in integrating external inputs onto internal dynamics. Such developmental disengagement from external inputs is likely a fundamental step for the proper development of cognitive internal models. Despite its importance, the developmental timeline and circuit basis for this disengagement remain unknown. To address this issue, we have investigated the daily evolution of CA1 dynamics and underlying circuits during the first two postnatal weeks of mouse development using two-photon calcium imaging in non-anesthetized pups. We show that the first postnatal week ends with an abrupt shift in the representation of self-motion in CA1. Indeed, most CA1 pyramidal cells switch from activated to inhibited by self-generated movements at the end of the first postnatal week, whereas the majority of GABAergic neurons remain positively modulated throughout this period. This rapid switch occurs within 2 days and follows the rapid anatomical and functional surge of local somatic GABAergic innervation. The observed change in dynamics is consistent with a two-population model undergoing a strengthening of inhibition. We propose that this abrupt developmental transition inaugurates the emergence of internal hippocampal dynamics.


Assuntos
Hipocampo , Células Piramidais , Animais , Animais Recém-Nascidos , Hipocampo/fisiologia , Camundongos , Células Piramidais/fisiologia
19.
Neuron ; 54(1): 105-20, 2007 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-17408581

RESUMO

Correlated neuronal activity is instrumental in the formation of networks, but its emergence during maturation is poorly understood. We have used multibeam two-photon calcium microscopy combined with targeted electrophysiological recordings in order to determine the development of population coherence from embryonic to postnatal stages in the hippocampus. At embryonic stages (E16-E19), synchronized activity is absent, and neurons are intrinsically active and generate L-type channel-mediated calcium spikes. At birth, small cell assemblies coupled by gap junctions spontaneously generate synchronous nonsynaptic calcium plateaus associated to recurrent burst discharges. The emergence of coherent calcium plateaus at birth is controlled by oxytocin, a maternal hormone initiating labour, and progressively shut down a few days later by the synapse-driven giant depolarizing potentials (GDPs) that synchronize the entire network. Therefore, in the developing hippocampus, delivery is an important signal that triggers the first coherent activity pattern, which is silenced by the emergence of synaptic transmission.


Assuntos
Hipocampo , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Parto/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Cardiotônicos/farmacologia , Estimulação Elétrica/métodos , Embrião de Mamíferos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/fisiologia , Junções Comunicantes/efeitos da radiação , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Técnicas In Vitro , Camundongos , Neurônios/efeitos dos fármacos , Ocitócicos/farmacologia , Ocitocina/farmacologia , Técnicas de Patch-Clamp/métodos , Potássio/farmacologia , Pirimidinas/farmacologia
20.
Elife ; 102021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723790

RESUMO

Cellular diversity supports the computational capacity and flexibility of cortical circuits. Accordingly, principal neurons at the CA1 output node of the murine hippocampus are increasingly recognized as a heterogeneous population. Their genes, molecular content, intrinsic morpho-physiology, connectivity, and function seem to segregate along the main anatomical axes of the hippocampus. Since these axes reflect the temporal order of principal cell neurogenesis, we directly examined the relationship between birthdate and CA1 pyramidal neuron diversity, focusing on the ventral hippocampus. We used a genetic fate-mapping approach that allowed tagging three groups of age-matched principal neurons: pioneer, early-, and late-born. Using a combination of neuroanatomy, slice physiology, connectivity tracing, and cFos staining in mice, we show that birthdate is a strong predictor of CA1 principal cell diversity. We unravel a subpopulation of pioneer neurons recruited in familiar environments with remarkable positioning, morpho-physiological features, and connectivity. Therefore, despite the expected plasticity of hippocampal circuits, given their role in learning and memory, the diversity of their main components is also partly determined at the earliest steps of development.


Assuntos
Região CA1 Hipocampal/fisiologia , Neurogênese , Células Piramidais/fisiologia , Animais , Feminino , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA