Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(9): 5095-5110, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35544277

RESUMO

Promoters and enhancers are sites of transcription initiation (TSSs) and carry specific histone modifications, including H3K4me1, H3K4me3, and H3K27ac. Yet, the principles governing the boundaries of such regulatory elements are still poorly characterized. Alu elements are good candidates for a boundary function, being highly abundant in gene-rich regions, while essentially excluded from regulatory elements. Here, we show that the interval ranging from TSS to first upstream Alu, accommodates all H3K4me3 and most H3K27ac marks, while excluding DNA methylation. Remarkably, the average length of these intervals greatly varies in-between tissues, being longer in stem- and shorter in immune-cells. The very shortest TSS-to-first-Alu intervals were observed at promoters active in T-cells, particularly at immune genes, where first-Alus were traversed by RNA polymerase II transcription, while accumulating H3K4me1 signal. Finally, DNA methylation at first-Alus was found to evolve with age, regressing from young to middle-aged, then recovering later in life. Thus, the first-Alus upstream of TSSs appear as dynamic boundaries marking the transition from DNA methylation to active histone modifications at regulatory elements, while also participating in the recording of immune gene transcriptional events by positioning H3K4me1-modified nucleosomes.


Assuntos
Código das Histonas , Sequências Reguladoras de Ácido Nucleico , Epigênese Genética , Epigenômica , Regiões Promotoras Genéticas
2.
EMBO Rep ; 22(9): e52320, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34312949

RESUMO

HP1 proteins are best known as markers of heterochromatin and gene silencing. Yet, they are also RNA-binding proteins and the HP1γ/CBX3 family member is present on transcribed genes together with RNA polymerase II, where it regulates co-transcriptional processes such as alternative splicing. To gain insight in the role of the RNA-binding activity of HP1γ in transcriptionally active chromatin, we have captured and analysed RNAs associated with this protein. We find that HP1γ is specifically targeted to hexameric RNA motifs and coincidentally transposable elements of the SINE family. As these elements are abundant in introns, while essentially absent from exons, the HP1γ RNA association tethers unspliced pre-mRNA to chromatin via the intronic regions and limits the usage of intronic cryptic splice sites. Thus, our data unveil novel determinants in the relationship between chromatin and co-transcriptional splicing.


Assuntos
Precursores de RNA , Splicing de RNA , Processamento Alternativo/genética , Íntrons/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Proteínas de Ligação a RNA
3.
Life Sci Alliance ; 7(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39029934

RESUMO

HP1α/CBX5 is an epigenetic regulator with a suspected role in multiple sclerosis (MS). Here, using high-depth RNA sequencing on monocytes, we identified a subset of MS patients with reduced CBX5 expression, correlating with progressive stages of the disease and extensive transcriptomic alterations. Examination of rare non-coding RNA species in these patients revealed impaired maturation/degradation of U snRNAs and enhancer RNAs, indicative of reduced activity of the Integrator, a complex with suspected links to increased MS risk. At protein-coding genes, compromised Integrator activity manifested in reduced pre-mRNA splicing efficiency and altered expression of genes regulated by RNA polymerase II pause-release. Inactivation of Cbx5 in the mouse mirrored most of these transcriptional defects and resulted in hypersensitivity to experimental autoimmune encephalomyelitis. Collectively, our observations suggested a major contribution of the Integrator complex in safeguarding against transcriptional anomalies characteristic of MS, with HP1α/CBX5 emerging as an unexpected regulator of this complex's activity. These findings bring novel insights into the transcriptional aspects of MS and provide potential new criteria for patient stratification.


Assuntos
Homólogo 5 da Proteína Cromobox , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Transcriptoma , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Animais , Camundongos , Transcriptoma/genética , Feminino , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Masculino , Adulto , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Pessoa de Meia-Idade , Splicing de RNA/genética , Regulação da Expressão Gênica , Monócitos/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Camundongos Endogâmicos C57BL , Perfilação da Expressão Gênica/métodos
4.
Nat Commun ; 13(1): 6834, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400769

RESUMO

Defects in RNA splicing have been linked to human disorders, but remain poorly explored in inflammatory bowel disease (IBD). Here, we report that expression of the chromatin and alternative splicing regulator HP1γ is reduced in ulcerative colitis (UC). Accordingly, HP1γ gene inactivation in the mouse gut epithelium triggers IBD-like traits, including inflammation and dysbiosis. In parallel, we find that its loss of function broadly increases splicing noise, favoring the usage of cryptic splice sites at numerous genes with functions in gut biology. This results in the production of progerin, a toxic splice variant of prelamin A mRNA, responsible for the Hutchinson-Gilford Progeria Syndrome of premature aging. Splicing noise is also extensively detected in UC patients in association with inflammation, with progerin transcripts accumulating in the colon mucosa. We propose that monitoring HP1γ activity and RNA splicing precision can help in the management of IBD and, more generally, of accelerated aging.


Assuntos
Colite Ulcerativa , Progéria , Humanos , Camundongos , Animais , Homólogo 5 da Proteína Cromobox , Colite Ulcerativa/genética , Splicing de RNA/genética , Progéria/genética , Progéria/metabolismo , Inflamação
5.
Life Sci Alliance ; 4(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33446491

RESUMO

Accumulation of senescent cells is an important contributor to chronic inflammation upon aging. The inflammatory phenotype of senescent cells was previously shown to be driven by cytoplasmic DNA. Here, we propose that cytoplasmic double-stranded RNA has a similar effect. We find that several cell types driven into senescence by different routes share an accumulation of long promoter RNAs and 3' gene extensions rich in retrotransposon sequences. Accordingly, these cells display increased expression of genes involved in response to double stranded RNA of viral origin downstream of the interferon pathway. The RNA accumulation is associated with evidence of reduced RNA turnover, including in some cases, reduced expression of RNA exosome subunits. Reciprocally, depletion of RNA exosome subunit EXOSC3 accelerated expression of multiple senescence markers. A senescence-like RNA accumulation was also observed in cells exposed to oxidative stress, an important trigger of cellular senescence. Altogether, we propose that in a subset of senescent cells, repeat-containing transcripts stabilized by oxidative stress or reduced RNA exosome activity participate in driving and maintaining the permanent inflammatory state characterizing cellular senescence.


Assuntos
Senescência Celular/genética , Estabilidade de RNA/genética , RNA/metabolismo , Linhagem Celular , Dano ao DNA , Humanos , Inflamação/metabolismo , Estresse Oxidativo/genética , Fenótipo , RNA/genética , RNA de Cadeia Dupla/efeitos adversos , RNA de Cadeia Dupla/genética , Retroelementos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA