Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(5): e2350450, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38356202

RESUMO

The Wiskott-Aldrich syndrome protein (WASp) regulates actin cytoskeletal dynamics and function of hematopoietic cells. Mutations in the WAS gene lead to two different syndromes; Wiskott-Aldrich syndrome (WAS) caused by loss-of-function mutations, and X-linked neutropenia (XLN) caused by gain-of-function mutations. We previously showed that WASp-deficient mice have a decreased number of regulatory T (Treg) cells in the thymus and the periphery. We here evaluated the impact of WASp mutations on Treg cells in the thymus of WAS and XLN mouse models. Using in vitro Treg differentiation assays, WAS CD4 single-positive thymocytes have decreased differentiation to Treg cells, despite normal early signaling upon IL-2 and TGF-ß stimulation. They failed to proliferate and express CD25 at high levels, leading to poor survival and a lower number of Foxp3+ Treg cells. Conversely, XLN CD4 single-positive thymocytes efficiently differentiate into Foxp3+ Treg cells following a high proliferative response to IL-2 and TGF-ß, associated with high CD25 expression when compared with WT cells. Altogether, these results show that specific mutations of WASp affect Treg cell development differently, demonstrating a critical role of WASp activity in supporting Treg cell development and expansion.


Assuntos
Diferenciação Celular , Proliferação de Células , Linfócitos T Reguladores , Timo , Proteína da Síndrome de Wiskott-Aldrich , Animais , Linfócitos T Reguladores/imunologia , Diferenciação Celular/imunologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Camundongos , Timo/imunologia , Timo/citologia , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Interleucina-2/metabolismo , Interleucina-2/imunologia , Mutação , Fator de Crescimento Transformador beta/metabolismo , Síndrome de Wiskott-Aldrich/imunologia , Síndrome de Wiskott-Aldrich/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL
2.
Neuroimmunomodulation ; 31(1): 51-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38272012

RESUMO

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematologic disease caused by the transformation and uncontrolled proliferation of T-cell precursors. T-ALL is generally thought to originate in the thymus since lymphoblasts express phenotypic markers comparable to those described in thymocytes in distinct stages of development. Although around 50% of T-ALL patients present a thymic mass, T-ALL is characterized by peripheral blood and bone marrow involvement, and central nervous system (CNS) infiltration is one of the most severe complications of the disease. SUMMARY: The CNS invasion is related to the expression of specific adhesion molecules and receptors commonly expressed in developing T cells, such as L-selectin, CD44, integrins, and chemokine receptors. Furthermore, T-ALL blasts also express neurotransmitters, neuropeptides, and cognate receptors that are usually present in the CNS and can affect both the brain and thymus, participating in the crosstalk between the organs. KEY MESSAGES: This review discusses how the thymus-brain connections, mediated by innervation and common molecules and receptors, can impact the development and migration of T-ALL blasts, including CNS infiltration.


Assuntos
Encéfalo , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Timo , Humanos , Timo/patologia , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Animais
3.
J Allergy Clin Immunol ; 149(3): 1069-1084, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34384840

RESUMO

BACKGROUND: B-cell affinity maturation in germinal center relies on regulated actin dynamics for cell migration and cell-to-cell communication. Activating mutations in the cytoskeletal regulator Wiskott-Aldrich syndrome protein (WASp) cause X-linked neutropenia (XLN) with reduced serum level of IgA. OBJECTIVE: We investigated the role of B cells in XLN pathogenesis. METHODS: We examined B cells from 6 XLN patients, 2 of whom had novel R268W and S271F mutations in WASp. By using immunized XLN mouse models that carry the corresponding patient mutations, WASp L272P or WASp I296T, we examined the B-cell response. RESULTS: XLN patients had normal naive B cells and plasmablasts, but reduced IgA+ B cells and memory B cells, and poor B-cell proliferation. On immunization, XLN mice had a 2-fold reduction in germinal center B cells in spleen, but with increased generation of plasmablasts and plasma cells. In vitro, XLN B cells showed reduced immunoglobulin class switching and aberrant cell division as well as increased production of immunoglobulin-switched plasma cells. CONCLUSIONS: Overactive WASp predisposes B cells for premature differentiation into plasma cells at the expense of cell proliferation and immunoglobulin class switching.


Assuntos
Linfócitos B , Neutropenia , Proteína da Síndrome de Wiskott-Aldrich , Animais , Linfócitos B/citologia , Divisão Celular , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Imunoglobulina A , Camundongos , Neutropenia/genética , Plasmócitos/patologia , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
4.
Neuroimmunomodulation ; 28(4): 213-221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34515173

RESUMO

The complex steps leading to the central nervous system (CNS) inflammation and the progress to neuroinflammatory and neurodegenerative disorders have opened up new research and intervention avenues. This review focuses on the therapeutic targeting of the VLA-4 integrin to discuss the clear-cut effect on immune cell trafficking into brain tissues. Besides, we explore the possibility that blocking VLA-4 may have a relevant impact on nonmigratory activities of immune cells, such as antigen presentation and T-cell differentiation, during the neuroinflammatory process. Lastly, the recent refinement of computational techniques is highlighted as a way to increase specificity and to reduce the detrimental side effects of VLA-4 immunotherapies aiming at developing better clinical interventions.


Assuntos
Integrina alfa4beta1 , Sistema Nervoso Central , Humanos , Imunoterapia , Ativação Linfocitária
5.
BMC Infect Dis ; 19(1): 986, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752731

RESUMO

BACKGROUND: Zika virus (ZIKV) infection gained public health concern after the 2015 outbreak in Brazil, when microcephaly rates increased in babies born from infected mothers. It was demonstrated that ZIKV causes a congenital Zika virus syndrome, including various alterations in the development of the central nervous system. Although the infection of cells from the nervous system has been well documented, less is known in respect of ZIKV ability to infect immune cells. Herein, we investigated if peripheral blood mononuclear cells (PBMCs), freshly-isolated from healthy donors, could be infected by ZIKV. METHODS: PBMCs from healthy donors were isolated and cultured in medium with ZIKV strain Rio-U1 (MOI = 0.1). Infection was analyzed by RT-qPCR and flow cytometry. RESULTS: We detected the ZIKV RNA in PBMCs from all donors by RT-qPCR analysis. The detection of viral antigens by flow cytometry revealed that PBMC from more than 50% the donors were infected by ZIKV, with CD3+CD4+ T cells, CD3-CD19+ B cells and CD3+CD8+ T cells being, respectively, the most frequently infected subpopulations, followed by CD14+ monocytes. Additionally, we observed high variability in PBMC infection rates among different donors, either by numbers or type infected cells. CONCLUSIONS: These findings raise the hypothesis that PBMCs can act as a reservoir of the virus, which may facilitate viral dissemination to different organs, including immune-privileged sites.


Assuntos
Leucócitos Mononucleares/virologia , Infecção por Zika virus/virologia , Zika virus/isolamento & purificação , Antígenos CD19/genética , Antígenos CD19/imunologia , Linfócitos B/imunologia , Brasil , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Humanos , Leucócitos Mononucleares/imunologia , Monócitos/imunologia , Monócitos/virologia , Reação em Cadeia da Polimerase em Tempo Real , Zika virus/genética , Zika virus/fisiologia , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/genética , Infecção por Zika virus/imunologia
6.
Adv Physiol Educ ; 43(2): 103-109, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835146

RESUMO

The use of computers as a pedagogical resource is currently on the rise. In the case of immunology, students present difficulties in visualizing molecular phenomena. Thus the use of animations and simulations available on the internet might facilitate the learning of complex immunological concepts. In this context, it is important to map and assess the currently available resources that may be used for educational purposes. This study comprises the search and analysis of educational immunology software freely available on the internet, which can aid students and health professionals in effective learning and continuing education scenarios. A detailed search in English on the existence of free software was carried out on websites and scientific databases. The results clearly indicate a lack of freely available and scientifically validated immunology educational software, despite the existence of several software programs that could be used as auxiliary teaching tools.


Assuntos
Alergia e Imunologia/educação , Instrução por Computador/métodos , Internet , Software , Alergia e Imunologia/tendências , Instrução por Computador/tendências , Humanos , Internet/tendências , Aprendizagem , Aplicativos Móveis/tendências , Software/tendências
7.
Int J Mol Sci ; 19(5)2018 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-29757216

RESUMO

NOD (non-obese diabetic) mice spontaneously develop type 1 diabetes following T cell-dependent destruction of pancreatic β cells. Several alterations are observed in the NOD thymus, including the presence of giant perivascular spaces (PVS) filled with single-positive (SP) CD4⁺ and CD8⁺ T cells that accumulate in the organ. These cells have a decreased expression of membrane CD49e (the α5 integrin chain of the fibronectin receptor VLA-5 (very late antigen-5). Herein, we observed lower sphingosine-1-phosphate receptor 1 (S1P1) expression in NOD mouse thymocytes when compared with controls, mainly in the mature SP CD4⁺CD62Lhi and CD8⁺CD62Lhi subpopulations bearing the CD49e− phenotype. In contrast, differences in S1P1 expression were not observed in mature CD49e⁺ thymocytes. Functionally, NOD CD49e− thymocytes had reduced S1P-driven migratory response, whereas CD49e⁺ cells were more responsive to S1P. We further noticed a decreased expression of the sphingosine-1-phosphate lyase (SGPL1) in NOD SP thymocytes, which can lead to a higher sphingosine-1-phosphate (S1P) expression around PVS and S1P1 internalization. In summary, our results indicate that the modulation of S1P1 expression and S1P/S1P1 interactions in NOD mouse thymocytes are part of the T-cell migratory disorder observed during the pathogenesis of type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Receptores de Lisoesfingolipídeo/genética , Timócitos/metabolismo , Animais , Movimento Celular , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Integrina alfa5/genética , Integrina alfa5/metabolismo , Integrina alfa5beta1/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
8.
Genet Mol Biol ; 41(1): 167-179, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29583154

RESUMO

The human C-C chemokine receptor type-5 (CCR5) is the major transmembrane co-receptor that mediates HIV-1 entry into target CD4+ cells. Gene therapy to knock-out the CCR5 gene has shown encouraging results in providing a functional cure for HIV-1 infection. In gene therapy strategies, the initial region of the CCR5 gene is a hotspot for producing functional gene knock-out. Such target gene editing can be done using programmable endonucleases such as transcription activator-like effector nucleases (TALEN) or clustered regularly interspaced short palindromic repeats (CRISPR-Cas9). These two gene editing approaches are the most modern and effective tools for precise gene modification. However, little is known of potential differences in the efficiencies of TALEN and CRISPR-Cas9 for editing the beginning of the CCR5 gene. To examine which of these two methods is best for gene therapy, we compared the patterns and amount of editing at the beginning of the CCR5 gene using TALEN and CRISPR-Cas9 followed by DNA sequencing. This comparison revealed that CRISPR-Cas9 mediated the sorting of cells that contained 4.8 times more gene editing than TALEN+ transfected cells.

9.
J Exp Med ; 204(2): 381-91, 2007 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-17296786

RESUMO

The Wiskott-Aldrich syndrome, a primary human immunodeficiency, results from defective expression of the hematopoietic-specific cytoskeletal regulator Wiskott-Aldrich syndrome protein (WASP). Because CD4(+)CD25(+)Foxp3(+) naturally occurring regulatory T (nTreg) cells control autoimmunity, we asked whether colitis in WASP knockout (WKO) mice is associated with aberrant development/function of nTreg cells. We show that WKO mice have decreased numbers of CD4(+)CD25(+)Foxp3(+) nTreg cells in both the thymus and peripheral lymphoid organs. Moreover, we demonstrate that WKO nTreg cells are markedly defective in both their ability to ameliorate the colitis induced by the transfer of CD45RB(hi) T cells and in functional suppression assays in vitro. Compared with wild-type (WT) nTreg cells, WKO nTreg cells show significantly impaired homing to both mucosal (mesenteric) and peripheral sites upon adoptive transfer into WT recipient mice. Suppression defects may be independent of antigen receptor-mediated actin rearrangement because both WT and WKO nTreg cells remodeled their actin cytoskeleton inefficiently upon T cell receptor stimulation. Preincubation of WKO nTreg cells with exogenous interleukin (IL)-2, combined with antigen receptor-mediated activation, substantially rescues the suppression defects. WKO nTreg cells are also defective in the secretion of the immunomodulatory cytokine IL-10. Overall, our data reveal a critical role for WASP in nTreg cell function and implicate nTreg cell dysfunction in the autoimmunity associated with WASP deficiency.


Assuntos
Autoimunidade/imunologia , Colite/imunologia , Fatores de Transcrição Forkhead/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Linfócitos T Reguladores/imunologia , Proteína da Síndrome de Wiskott-Aldrich/imunologia , Transferência Adotiva , Animais , Autoimunidade/genética , Movimento Celular/imunologia , Colite/induzido quimicamente , Citometria de Fluxo , Interleucina-10/metabolismo , Interleucina-2/imunologia , Antígenos Comuns de Leucócito/toxicidade , Camundongos , Camundongos Knockout , Timo/citologia , Proteína da Síndrome de Wiskott-Aldrich/deficiência , Proteína da Síndrome de Wiskott-Aldrich/genética
10.
Am J Pathol ; 181(2): 593-604, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22733008

RESUMO

Duchenne muscular dystrophy (DMD), an X-linked recessive disorder affecting 1 in 3500 males, is caused by mutations in the dystrophin gene. DMD leads to degeneration of skeletal and cardiac muscles and to chronic inflammation. The mdx/mdx mouse has been widely used to study DMD; this model mimics most characteristics of the disease, including low numbers of T cells in damaged muscles. In this study, we aimed to assess migration of T cells to the heart and to identify any alterations in adhesion molecules that could possibly modulate this process. In 6-week-old mdx/mdx mice, blood leukocytes, including T cells, were CD62L(+), but by 12 weeks of age down-modulation was evident, with only approximately 40% of T cells retaining this molecule. Our in vitro and in vivo results point to a P2X7-dependent shedding of CD62L (with high levels in the serum), which in 12-week-old mdx/mdx mice reduces blood T cell competence to adhere to cardiac vessels in vitro and to reach cardiac tissue in vivo, even after Trypanosoma cruzi infection, a known inducer of lymphoid myocarditis. In mdx/mdx mice treated with Brilliant Blue G, a P2X7 blocker, these blood lymphocytes retained CD62L and were capable of migrating to the heart. These results provide new insights into the mechanisms of inflammatory infiltration and immune regulation in DMD.


Assuntos
Movimento Celular/imunologia , Distrofina/deficiência , Músculos/imunologia , Músculos/patologia , Linfócitos T/imunologia , Linfócitos T/patologia , Animais , Vasos Sanguíneos/imunologia , Vasos Sanguíneos/patologia , Adesão Celular/imunologia , Distrofina/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Selectina L/sangue , Ativação Linfocitária , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Atividade Motora , Músculos/fisiopatologia , Distrofia Muscular Animal/imunologia , Distrofia Muscular Animal/parasitologia , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/fisiopatologia , Miocárdio/imunologia , Miocárdio/patologia , Receptores Purinérgicos P2X7/metabolismo , Solubilidade , Trypanosoma cruzi/fisiologia
11.
Mem Inst Oswaldo Cruz ; 108(7): 825-31, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24271041

RESUMO

Developing thymocytes interact with thymic epithelial cells (TECs) through cell-cell interactions, TEC-derived secretory moieties and extracellular matrix (ECM)-mediated interactions. These physiological interactions are crucial for normal thymocyte differentiation, but can be disrupted in pathological situations. Indeed, there is severe thymic atrophy in animals acutely infected with Trypanosoma cruzi due to CD4+CD8+ thymocyte depletion secondary to caspase-mediated apoptosis, together with changes in ECM deposition and thymocyte migration. We studied an in vitro model of TEC infection by T. cruzi and found that infected TEC cultures show a reduced number of cells, which was likely associated with decreased proliferative capacity, but not with increased cell death, as demonstrated by bromodeoxyuridine and annexin-V labelling. The infected TEC cultures exhibited increased expression of fibronectin (FN), laminin (LM) and type IV collagen. Importantly, treatment with FN increased the relative number of infected cells, whereas treatment with anti-FN or anti-LM antibodies resulted in lower infection rates. Consistent with these data, we observed increased thymocyte adhesion to infected TEC cultures. Overall, these results suggest that ECM molecules, particularly FN, facilitate infection of the thymic epithelium and that the consequent enhancement of ECM expression might be associated with changes in TEC-thymocyte interactions.


Assuntos
Doença de Chagas/metabolismo , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Timócitos/metabolismo , Timo/metabolismo , Animais , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Modelos Animais de Doenças , Células Epiteliais/parasitologia , Masculino , Camundongos Endogâmicos BALB C , Timócitos/parasitologia , Timo/citologia
12.
Immunology ; 137(2): 183-96, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22804504

RESUMO

T-cell scanning for antigen-presenting cells (APC) is a finely tuned process. Whereas non-cognate APC trigger T-cell motility via chemokines and intercellular adhesion molecule-1 (ICAM-1), cognate APC deliver a stop signal resulting from antigen recognition. We tested in vitro the contribution of the actin cytoskeleton regulator Wiskott-Aldrich syndrome protein (WASP) to the scanning activity of primary human CD4(+)  T cells. WASP knock-down resulted in increased T-cell motility upon encounter with non-cognate dendritic cells or B cells and reduced capacity to stop following antigen recognition. The high motility of WASP-deficient T cells was accompanied by a diminished ability to round up and to stabilize pauses. WASP-deficient T cells migrated in a normal proportion towards CXCL12, CCL19 and CCL21, but displayed an increased adhesion and elongation on ICAM-1. The elongated morphology of WASP-deficient T cells was related to a reduced confinement of high-affinity lymphocyte function-associated antigen 1 to the mid-cell zone. Our data therefore indicate that WASP controls CD4(+) T-cell motility upon APC encounter by regulating lymphocyte function-associated antigen 1 spatial distribution.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Movimento Celular , Molécula 1 de Adesão Intercelular/imunologia , Proteína da Síndrome de Wiskott-Aldrich/imunologia , Linfócitos T CD4-Positivos/citologia , Adesão Celular , Células Cultivadas , Humanos , RNA Interferente Pequeno/genética , Proteína da Síndrome de Wiskott-Aldrich/genética
13.
PLoS Negl Trop Dis ; 16(2): e0010166, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171909

RESUMO

The tropism of Zika virus (ZIKV) has been described in the nervous system, blood, placenta, thymus, and skeletal muscle. We investigated the mechanisms of skeletal muscle susceptibility to ZIKV using an in vitro model of human skeletal muscle myogenesis, in which myoblasts differentiate into myotubes. Myoblasts were permissive to ZIKV infection, generating productive viral particles, while myotubes controlled ZIKV replication. To investigate the underlying mechanisms, we used gene expression profiling. First, we assessed gene changes in myotubes compared with myoblasts in the model without infection. As expected, we observed an increase in genes and pathways related to the contractile muscle system in the myotubes, a reduction in processes linked to proliferation, migration and cytokine production, among others, confirming the myogenic capacity of our system in vitro. A comparison between non-infected and infected myoblasts revealed more than 500 differentially expressed genes (DEGs). In contrast, infected myotubes showed almost 2,000 DEGs, among which we detected genes and pathways highly or exclusively expressed in myotubes, including those related to antiviral and innate immune responses. Such gene modulation could explain our findings showing that ZIKV also invades myotubes but does not replicate in these differentiated cells. In conclusion, we showed that ZIKV largely (but differentially) disrupts gene expression in human myoblasts and myotubes. Identifying genes involved in myotube resistance can shed light on potential antiviral mechanisms against ZIKV infection.


Assuntos
Infecção por Zika virus , Zika virus , Antivirais/metabolismo , Feminino , Expressão Gênica , Humanos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Gravidez , Zika virus/fisiologia , Infecção por Zika virus/genética
14.
Immunother Adv ; 1(1): ltab002, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35919739

RESUMO

One major finding of chronic inflammatory diseases of various origins is the establishment of inflammatory infiltrates, bearing different leukocyte subpopulations, including activated T lymphocytes. Integrins are among the large series of molecular interactions that have been implicated as players in both triggering and maintenance of leukocyte influx from the blood into a given organ parenchyme. Accordingly, blocking the interaction between VLA-6 integrin and laminin, experimentally abrogates heart graft rejection. Many reports have shown that VLA-4 is used by T cells to cross endothelial barriers, as well as to migrate within target tissues. In this respect, a humanized IgG4 anti-VLA-4 monoclonal antibody (specific to the α4-integrin chain of VLA-4) has been successfully applied to treat multiple sclerosis as well as inflammatory bowel disease. Anti-VLA-4 monoclonal antibody has also been applied to block transendothelial passage in other autoimmune diseases, such as rheumatoid arthritis. On this same vein is the action of such a reagent in impairing in vitro transendothial and fibronectin-driven migration of CD4+ and CD8+ T cells expressing high densities of VLA-4 from Duchenne muscular dystrophy patients, thus potentially enlarging the use of this strategy to other diseases. Yet, in a small number of patients, the use of Natalizumab has been correlated with the progressive multifocal leukoencephalopathy, a serious brain infection caused by the John Cunningham virus. This issue restricted the use of the reagent. In this respect, the development of smaller and more specific antibody reagents should be envisioned as a next-generation promising strategy.

15.
Xenotransplantation ; 17(3): 181-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20636538

RESUMO

The treatment of acute and chronic liver failure is still a challenge despite modern therapeutic innovations. While liver transplantation can restore liver function and improve patient survival, donor shortages limit this treatment to a small number of patients. Cellular xenotransplantation has emerged as an alternative for treating liver failure. Xenohepatocytes could be readily available in sufficient quantities to treat patients in critical condition and thereby reduce the donor shortage. The use of isolated encapsulated or non-encapsulated cells can reduce the immunorejection response. Several studies using animal models of acute or chronic liver failure have demonstrated improved survival and recovery of liver function after xenotransplantation of adult hepatocytes. Porcine liver cells are a potential source of xenohepatocytes due to similarities with human physiology and the great number of hepatocytes that can be obtained. The recent development of less immunogenic transgenic pigs, new immunosuppressive drugs, and cellular encapsulation systems represents important advances in the field of cellular xenotransplantation. In this study, we review the work carried out in animal models that deals with the advantages and limitations of hepatocyte xenotransplantation, and we propose new studies needed in this field.


Assuntos
Hepatócitos/transplante , Hepatopatias/cirurgia , Transplante de Fígado , Transplante Heterólogo , Animais , Rejeição de Enxerto , Humanos , Falência Hepática/cirurgia , Transplante Heterólogo/efeitos adversos , Transplante Heterólogo/imunologia , Zoonoses/etiologia
16.
J Leukoc Biol ; 108(4): 1067-1079, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32620049

RESUMO

Innovative immunotherapies based on immune checkpoint targeting antibodies and engineered T cells are transforming the way we approach cancer treatment. However, although these T cell centered strategies result in marked and durable responses in patients across many different tumor types, they provide therapeutic efficacy only in a proportion of patients. A major challenge of immuno-oncology is thereby to identify mechanisms responsible for resistance to cancer immunotherapy in order to overcome them via adapted strategies that will ultimately improve intrinsic efficacy and response rates. Here, we focus on the barriers that restrain the trafficking of chimeric antigen receptor (CAR)-expressing T cells to solid tumors. Upon infusion, CAR T cells need to home into malignant sites, navigate within complex tumor environments, form productive interactions with cancer cells, deliver their cytotoxic activities, and finally persist. We review the accumulating evidence that the microenvironment of solid tumors contains multiple obstacles that hinder CAR T cells in the dynamic steps underlying their trafficking. We focus on how these hurdles may in part account for the failure of CAR T cell clinical trials in human carcinomas. Given the engineered nature of CAR T cells and possibilities to modify the tumor environment, there are ample opportunities to augment CAR T cell ability to efficiently find and combat tumors. We present some of these strategies, which represent a dynamic field of research with high potential for clinical applicability.


Assuntos
Antígenos de Neoplasias/imunologia , Movimento Celular/imunologia , Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T , Microambiente Tumoral/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T/imunologia , Linfócitos T/patologia
17.
ACS Omega ; 5(27): 16379-16385, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685800

RESUMO

Integrins are cell adhesion receptors that transmit bidirectional signals across the plasma membrane. They are noncovalently linked heterodimeric molecules consisting of two subunits and act as biomarkers in several pathologies. Thus, according to the increase of therapeutic antibody production, some efforts have been applied to produce anti-integrin antibodies. Here, we purposed to evaluate methods of generation and identification of the binding pose of integrin-antibody complexes, through protein-protein docking and molecular dynamics simulations, and propose a strategy to assure the confidence of the final model and avoid false-positive poses. The results show that ClusPro and GRAMM-X were the best programs to generate the native pose of integrin-antibody complexes. Furthermore, we were able to recover and to ensure that the selected pose is the native one by using a simple rule. All complexes from ClusPro in which the first model had the lowest energy, at least 5% more negative than the second one, were correctly predicted. Therefore, our methodology seems to be efficient to avoid misranking of wrong poses for integrin-antibody complexes. In cases where the rule is inconclusive, we proposed the use of heated molecular dynamics to identify the native pose characterized by RMSDi <0.5 nm. We believe that the set of methods presented here helps in the rational design of anti-integrin antibodies, giving some insights on the development of new biopharmaceuticals.

18.
Materials (Basel) ; 13(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187294

RESUMO

Microencapsulation is a widely studied cell therapy and tissue bioengineering technique, since it is capable of creating an immune-privileged site, protecting encapsulated cells from the host immune system. Several polymers have been tested, but sodium alginate is in widespread use for cell encapsulation applications, due to its low toxicity and easy manipulation. Different cell encapsulation methods have been described in the literature using pressure differences or electrostatic changes with high cost commercial devices (about 30,000 US dollars). Herein, a low-cost device (about 100 US dollars) that can be created by commercial syringes or 3D printer devices has been developed. The capsules, whose diameter is around 500 µm and can decrease or increase according to the pressure applied to the system, is able to maintain cells viable and functional. The hydrogel porosity of the capsule indicates that the immune system is not capable of destroying host cells, demonstrating that new studies can be developed for cell therapy at low cost with microencapsulation production. This device may aid pre-clinical and clinical projects in low- and middle-income countries and is lined up with open source equipment devices.

19.
PLoS Negl Trop Dis ; 14(12): e0008969, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347472

RESUMO

CD8 T cells are regarded as pivotal players in both immunoprotection and immunopathology following Trypanosoma cruzi infection. Previously, we demonstrated the expansion of CD8+ T lymphocytes in the spleen of T. cruzi-infected mice under treatment with benznidazole (N-benzyl-2-nitroimidazole acetamide; Bz), a drug available for clinical therapy. This finding underlies the concept that the beneficial effects of Bz on controlling acute T. cruzi infection are related to a synergistic process between intrinsic trypanocidal effect and indirect triggering of the active immune response. In the present study, we particularly investigated the effect of Bz treatment on the CD8+ T cell subset following T. cruzi infection. Herein we demonstrated that, during acute T. cruzi infection, Bz treatment reduces and abbreviates the parasitemia, but maintains elevated expansion of CD8+ T cells. Within this subset, a remarkable group of CD8low cells was found in both Bz-treated and non-treated infected mice. In Bz-treated mice, early pathogen control paralleled the lower frequency of recently activated CD8low cells, as ascertained by CD69 expression. However, the CD8low subset sustains significant levels of CD44highCD62Llow and CD62LlowT-bethigh effector memory T cells, in both Bz-treated and non-treated infected mice. These CD8low cells also comprise the main group of spontaneous interferon (IFN)-γ-producing CD8+ T cells. Interestingly, following in vitro anti-CD3/CD28 stimulation, CD8+ T cells from Bz-treated T. cruzi-infected mice exhibited higher frequency of IFN-γ+ cells, which bear mostly a CD8low phenotype. Altogether, our results point to the marked presence of CD8low T cells that arise during acute T. cruzi infection, with Bz treatment promoting their significant expansion along with a potential effector program for high IFN-γ production.


Assuntos
Doença de Chagas/tratamento farmacológico , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Doença Aguda , Animais , Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/parasitologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Trypanosoma cruzi/genética
20.
Sci Rep ; 10(1): 1378, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992777

RESUMO

Previous work showed that the thymus can be infected by RNA viruses as HIV and HTLV-1. We thus hypothesized that the thymus might also be infected by the Zika virus (ZIKV). Herein we provide compelling evidence that ZIKV targets human thymic epithelial cells (TEC) in vivo and in vitro. ZIKV-infection enhances keratinization of TEC, with a decrease in proliferation and increase in cell death. Moreover, ZIKV modulates a high amount of coding RNAs with upregulation of genes related to cell adhesion and migration, as well as non-coding genes including miRNAs, circRNAs and lncRNAs. Moreover, we observed enhanced attachment of lymphoblastic T-cells to infected TEC, as well as virus transfer to those cells. Lastly, alterations in thymuses from babies congenitally infected were seen, with the presence of viral envelope protein in TEC. Taken together, our data reveals that the thymus, particularly the thymic epithelium, is a target for the ZIKV with changes in the expression of molecules that are relevant for interactions with developing thymocytes.


Assuntos
Células Epiteliais , Timócitos , Timo , Tropismo Viral , Infecção por Zika virus , Zika virus/fisiologia , Animais , Chlorocebus aethiops , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Epitélio/metabolismo , Epitélio/patologia , Epitélio/virologia , Humanos , Timócitos/metabolismo , Timócitos/patologia , Timócitos/virologia , Timo/metabolismo , Timo/patologia , Timo/virologia , Células Vero , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA