Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
J Environ Manage ; 358: 120904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643624

RESUMO

This study focused on the economic feasibility of two potential industrial-scale bioleaching technologies for metal recovery from specific metallurgical by-products, mainly basic oxygen steelmaking dust (BOS-D) and goethite. The investigation compared two bioleaching scaling technology configurations, including an aerated bioreactor and an aerated and stirred bioreactor across different scenarios. Results indicated that bioleaching using Acidithiobacillus ferrooxidans proved financially viable for copper extraction from goethite, particularly when 5% and 10% pulp densities were used in the aerated bioreactor, and when 10% pulp density was used in the aerated and stirred bioreactor. Notably, a net present value (NPV) of $1,275,499k and an internal rate of return (IRR) of 65% for Cu recovery from goethite were achieved over 20-years after project started using the aerated and stirred bioreactor plant with a capital expenditure (CAPEX) of $119,816,550 and an operational expenditure (OPEX) of $5,896,580/year. It is expected that plant will start to make profit after one year of operation. Aerated and stirred bioreactor plant appeared more reliable alternative compared to the aerated bioreactor plant as the plant consists of 12 reactors which can allow better management and operation in small volume with multiple reactors. Despite the limitations, this techno-economic assessment emphasized the significance of selective metal recovery and plant design, and underscored the major expenses associated with the process.


Assuntos
Acidithiobacillus , Reatores Biológicos , Metalurgia , Acidithiobacillus/metabolismo , Cobre , Minerais , Compostos de Ferro
3.
J Environ Manage ; 363: 121350, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850901

RESUMO

Conventional methods of metal recovery involving solvents have raised environmental concerns. To address these concerns and promote sustainable resource recovery, we explored the use of deep eutectic solvents (DES) and chelating agents (CA) as more environmentally friendly alternatives. Goethite and blast oxide slag dust (BOS-D) from heap piles at their respective sites and characterised via ICP-MS. The greatest extraction of critical metals was from goethite, removing 38% of all metals compared to 21% from the blast oxide slag. Among the tested CA, nitrilotriacetic acid (NTA) was the most effective, while for DES, choline chloride ethylene glycol (ChCl-EG) demonstrated superior performance in extracting metals from both blast oxide slag dust and goethite. The study further highlighted the selectivity for transition metals and metalloids was influenced by the carboxyl groups of DES. Alkaline metals and rare earth lanthanides extractions were favoured with DES due to improved mass transfer and increased denticity, respectively. In comparison to ethylenediaminetetraacetic acid (EDTA), typically used for metal extraction, CA and DES showed comparable extraction efficiency for Fe, Cu, Pb, Li, Al, Mn, and Ni. Using these greener chelators and solvents for metal extraction show significant promise in enhancing the sustainability of solvometallurgy. Additional conditions e.g., temperature and agitation combined with a cascading leaching process could further enhance metal extraction potential.


Assuntos
Quelantes , Ácido Edético , Metais , Quelantes/química , Ácido Edético/química , Metais/química , Solventes Eutéticos Profundos/química , Solventes/química
4.
J Environ Manage ; 325(Pt A): 116393, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270126

RESUMO

Brownfield redevelopment is a complex process often involving a wide range of stakeholders holding differing priorities and opinions. The use of digital systems and products for decision making, modelling, and supporting discussion has been recognised throughout literature and industry. The inclusion of stakeholder preferences is an important consideration in the design and development of impactful digital tools and decision support systems. In this study, we present findings from stakeholder consultation with professionals from the UK brownfield sector with the aim of informing the design of future digital tools and systems. Our research investigates two broad themes; digitalisation and the use of digital tools across the sector; and perceptions of key brownfield challenge areas where digital tools could help better inform decision-makers. The methodology employed for this study comprises the collection of data and information using a combination of interviews and an online questionnaire. The results from these methods were evaluated both qualitatively and quantitatively. Findings reveal a disparity in levels of digital capability between stakeholder groups including between technical stakeholder types, and that cross-discipline communication of important issues may be aided by the development of carefully designed digital tools. To this end, we present seven core principles to guide the design and implementation of future digital tools for the brownfield sector. These principles are that future digital tools should be: (1) Stakeholder driven, (2) Problem centred, (3) Visual, (4) Intuitive, (5) Interactive, (6) Interoperable, and (7) Geospatial data driven.


Assuntos
Comunicação , Indústrias
5.
J Environ Manage ; 347: 119145, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806270

RESUMO

This research evaluates a novel decision support system (DSS) for planning brownfield redevelopment. The DSS is implemented within a web-based geographical information system that contains the spatial data informing three modules comprising land use suitability, economic viability, and ground risk. Using multi-criteria decision analysis, an evaluation was conducted on 31,942 ha of post-industrial land and around Liverpool, UK. The representativeness and credibility of the DSS outputs were evaluated through user trials with fifteen land-use planning and development stakeholders from the Liverpool City Region Comined Authority. The DSS was used to explore land use planning scenarios and it could be used to support decision making. Our research reveals that the DSS has the potential to positively inform the identification of brownfield redevelopment opportunities by offering a reliable, carefully curated, and user-driven digital evidence base. This expedites the traditionally manual process of conducting assessments of land suitability and viability. This research has important implications for assessing the impact of current and future planning policy and the potential for the use of digital tools for land use planning and sustainability in the UK and globally.


Assuntos
Sistemas de Informação Geográfica , Indústrias , Poder Psicológico
6.
Environ Res ; 204(Pt C): 112241, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34695428

RESUMO

In situ remediation of groundwater by zerovalent iron (ZVI)-based technology faces the problems of rapid passivation, fast agglomeration, limited range of pollutants and secondary contamination. Here a new concept of Magnesium-Aluminum (Mg-Al) alloys and in situ layered double hydroxides on is proposed for the degradation and removal of a wide variety of inorganic and organic pollutants from groundwater. The Mg-Al alloy provides the electrons for the chemical reduction and/or the degradation of pollutants while released Mg2+, Al3+ and OH- ions react to generate in situ LDH precipitates, incorporating other divalent and trivalent metals and oxyanions pollutants and further adsorbing the micropollutants. The Mg-Al alloy outperforms ZVI for treating acidic, synthetic groundwater samples contaminated by complex chemical mixtures of heavy metals (Cd2+, Cr6+, Cu2+, Ni2+ and Zn2+), nitrate, AsO33-, methyl blue, trichloroacetic acid and glyphosate. Specifically, the Mg-Al alloy achieves removal efficiency ≥99.7% for these multiple pollutants at concentrations ranging between 10 and 50 mg L-1 without producing any secondary contaminants. In contrast, ZVI removal efficiency did not exceed 90% and secondary contamination up to 220 mg L-1 Fe was observed. Overall, this study provides a new alternative approach to develop efficient, cost-effective and green remediation for water and groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ligas , Alumínio , Hidróxidos , Magnésio , Poluentes Químicos da Água/análise
7.
Ecotoxicol Environ Saf ; 240: 113689, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636240

RESUMO

Airborne E. coli, fecal coliform, and Enterococcus are all related to sewage worker's syndrome and therefore used as target enteric bioaerosols about researches in wastewater treatment plants (WWTPs). However, most of the studies are often inadequately carried out because they lack systematic studies reports bioaerosols emission characteristics and health risk assessments for these three enteric bacteria during seasonal variation. Therefore, quantitative microbial risk assessment based on Monte Carlo simulation was utilized in this research to assess the seasonal variations of health risks of the three enteric bioaerosols among exposure populations (academic visitors, field engineers, and office staffs) in a WWTP equipped with rotating-disc and microporous aeration modes. The results show that the concentrations of the three airborne bacteria from the rotating-disc aeration mode were 2-7 times higher than the microporous aeration mode. Field engineers had health risks 1.5 times higher than academic visitors due to higher exposure frequency. Health risks of airborne Enterococcus in summer were up to 3 times higher than those in spring and winter. Similarly, health risks associated to E. coli aerosol exposure were 0.3 times higher in summer compared to spring. In contrast, health risks associated with fecal coliform aerosol were between 2 and 19 times lower in summer compared to spring and winter seasons. Data further suggest that wearing of N95 mask could minimize health risks by 1-2 orders of magnitude. This research shed light on seasonal variation of health risks associated with bioaerosol emission from wastewater utilities.


Assuntos
Microbioma Gastrointestinal , Purificação da Água , Aerossóis , Microbiologia do Ar , Escherichia coli , Bactérias Gram-Negativas , Humanos , Medição de Risco , Estações do Ano , Águas Residuárias/microbiologia
8.
J Environ Manage ; 304: 114319, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35021592

RESUMO

Prunus Armeniaca seed (PAS) oil was utilised as a waste biomass feedstock for biodiesel production via a novel catalytic system (SrO-La2O3) based on different stoichiometric ratios. The catalysts have been characterised and followed by a parametric analysis to optimise catalyst results. The catalyst with a stoichiometric ratio of Sr: La-8 (Sr-La-C) using parametric analysis showed an optimum yield of methyl esters is 97.28% at 65 °C, reaction time 75 min, catalyst loading 3 wt% and methanol to oil molar ratio of 9. The optimum catalyst was tested using various oil feedstocks such as waste cooking oil, sunflower oil, PAS oil, date seed oil and animal fat. The life cycle assessment was performed to evaluate the environmental impacts of biodiesel production utilising waste PAS, considering 1000 kg of biodiesel produced as 1 functional unit. The recorded results showed the cumulative abiotic depletion of fossil resources over the entire biodiesel production process as 22,920 MJ, global warming potential as 1150 kg CO2 equivalent, acidification potential as 4.89 kg SO2 equivalent and eutrophication potential as 0.2 kg PO43- equivalent for 1 tonne (1000 kg) of biodiesel produced. Furthermore, the energy ratio (measured as output energy divided by input energy) for the entire production process was 1.97. These results demonstrated that biodiesel obtained from the valorisation of waste PAS provides a suitable alternative to fossil fuels.


Assuntos
Biocombustíveis , Prunus armeniaca , Animais , Catálise , Estágios do Ciclo de Vida , Óleos de Plantas
9.
Ecotoxicol Environ Saf ; 207: 111514, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254394

RESUMO

The present study investigated the stability and efficacy of a biosurfactant produced by Klebsiella sp. KOD36 under extreme conditions and its potential for enhancing the solubilization and degradation of phenanthrene in various environmental matrices. Klebsiella sp. KOD36 produced a mono-rhamnolipids biosurfactant with a low critical micelle concentration (CMC) value. The biosurfactant was stable under extreme conditions (60 °C, pH 10 and 10% salinity) and could lower surface tension by 30% and maintained an emulsification index of > 40%. The emulsion index was also higher (17-43%) in the presence of petroleum hydrocarbons compared to synthetic surfactant Triton X-100. Investigation on phenanthrene degradation in three different environmental matrices (aqueous, soil-slurry and soil) confirmed that the biosurfactant enhanced the solubilization and biodegradation of phenanthrene in all matrices. The high functional stability and performance of the biosurfactant under extreme conditions on phenanthrene degradation show the great potential of the biosurfactant for remediation applications under harsh environmental conditions.


Assuntos
Biodegradação Ambiental , Klebsiella/fisiologia , Fenantrenos/metabolismo , Tensoativos/metabolismo , Meios de Cultura , Emulsões , Glicolipídeos , Hidrocarbonetos/metabolismo , Klebsiella/metabolismo , Micelas , Petróleo/metabolismo , Solo , Poluentes do Solo/metabolismo
10.
J Environ Manage ; 295: 113362, 2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34346390

RESUMO

This review compiles recent advances and challenges on photocatalytic treatment of wastewater using nanoparticles, nanocomposites, and polymer nanocomposites as photocatalyst. The review provides an overview of the fundamental principles of photocatalytic treatment along the recent advances on photocatalytic treatment, especially on the modification strategies and operational conditions to enhance treatment efficiency and removal of recalcitrant organic contaminants. The different types of photocatalysts along the key factors influencing their performance are also critically discussed and recommendations for future research are provided.

11.
Microb Cell Fact ; 19(1): 121, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493445

RESUMO

BACKGROUND: Xylitol is a commercially important chemical with multiple applications in the food and pharmaceutical industries. According to the US Department of Energy, xylitol is one of the top twelve platform chemicals that can be produced from biomass. The chemical method for xylitol synthesis is however, expensive and energy intensive. In contrast, the biological route using microbial cell factories offers a potential cost-effective alternative process. The bioprocess occurs under ambient conditions and makes use of biocatalysts and biomass which can be sourced from renewable carbon originating from a variety of cheap waste feedstocks. RESULT: In this study, biotransformation of xylose to xylitol was investigated using Yarrowia lipolytica, an oleaginous yeast which was firstly grown on a glycerol/glucose for screening of co-substrate, followed by media optimisation in shake flask, scale up in bioreactor and downstream processing of xylitol. A two-step medium optimization was employed using central composite design and artificial neural network coupled with genetic algorithm. The yeast amassed a concentration of 53.2 g/L xylitol using pure glycerol (PG) and xylose with a bioconversion yield of 0.97 g/g. Similar results were obtained when PG was substituted with crude glycerol (CG) from the biodiesel industry (titer: 50.5 g/L; yield: 0.92 g/g). Even when xylose from sugarcane bagasse hydrolysate was used as opposed to pure xylose, a xylitol yield of 0.54 g/g was achieved. Xylitol was successfully crystallized from PG/xylose and CG/xylose fermentation broths with a recovery of 39.5 and 35.3%, respectively. CONCLUSION: To the best of the author's knowledge, this study demonstrates for the first time the potential of using Y. lipolytica as a microbial cell factory for xylitol synthesis from inexpensive feedstocks. The results obtained are competitive with other xylitol producing organisms.


Assuntos
Glicerol/metabolismo , Xilitol/biossíntese , Xilose/metabolismo , Yarrowia/metabolismo , Reatores Biológicos , Meios de Cultura/metabolismo , Microbiologia Industrial
12.
Ecotoxicol Environ Saf ; 198: 110645, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32344266

RESUMO

Finding a sound ecological-based approach for the removal of petroleum hydrocarbons (PHCs) from petroleum oily sludge (POS) generated in oil refinery plants is still a challenge. This study investigated the removal of total petroleum hydrocarbons (TPHs) using bioaugmentated composting (BC) by hydrocarbon-degrading bacteria (HDB) and vermicomposting (VC) by Eisenia fetida, individually and in combination (BCVC). After isolating two native bacterial strains from POS prepared from an oil refinery plant in Iran, the degradation capability of their consortium was initially assessed in mineral Bushnell-Haas medium (MBHM). Then, the biodegradation rates of POS in the BC, VC, and BCVC treatments containing different concentrations of TPHs (5, 10, and 20 g/kg) were determined by measuring TPHs before and after the biodegradation. The results showed that the consortium degraded 20-62% of TPHs contents of Kerosene (1-5%) in the MBHM after 7 days. After 12 weeks, the TPHs removal percentages in the BC, VC, and BCVC treatments were respectively found to be 81-83, 31-49, and 85-91 indicating the synergistic effect of bacteria and worms in bioremediation of POS. The PHCs biodegradation in the BC, VC, and BCVC experiments was fitted to 1st order model kinetics. The results of toxicity tests indicated that the values of the no observed lethal concentration (NOLC) and median lethal concentration (LC50) of TPHs were 2-5 and 14.64 g/kg, respectively after 28 days of earthworm exposure. Morphological impairments such as swelling, coiling, and curling were observed when TPHs concentration was even lower than NOLC. The study verified the effectiveness of vermicomposting bioaugmentated with the indigenous bacterial consortium for POS bioremediation.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Compostagem/métodos , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Petróleo/microbiologia , Irã (Geográfico) , Minerais/metabolismo , Esgotos/microbiologia , Poluentes do Solo/metabolismo
13.
J Environ Manage ; 258: 110013, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31929055

RESUMO

The effect of competition between isolated petroleum-degrading bacteria (PDB) and indigenous compost microorganisms (ICM) on the efficiency of composting process in bioremediation of petroleum waste sludge (PWS) was investigated. After isolating two native PDB (Acinetobacter radioresistens strain KA5 and Enterobacter hormaechei strain KA6) from PWS, their ability for growth and crude oil degradation was examined in the mineral-based culture (MBC). Then, the PDB isolate were inoculated into the composting experiments and operated for 12 weeks. The results showed that the PDB degraded 21.65-68.73% of crude oil (1-5%) in the MBC after 7 days. The PDB removed 84.30% of total petroleum hydrocarbon (TPHs) in the composting bioreactor containing the initial TPH level of 20 g kg-1. Removal of petroleum hydrocarbons (PHCs) in the composting experiments proceeded according to the first-order kinetics. The computed values of degradation rate constants and half-lives showed a better performance of the PDB than ICM for TPHs removal. This finding suggests that simultaneous application of the PDB and ICM in the composting reactors resulted in a decline in the effectiveness of the PDB which is due to competition between them. The study also verified that the capability of PDB in degrading PHCs can be successfully scaled-up from MBC to composting process.


Assuntos
Compostagem , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Minerais , Esgotos , Microbiologia do Solo
15.
J Environ Manage ; 146: 552-567, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25214073

RESUMO

Traffic emissions contribute significantly to the build-up of diffuse pollution loads on urban surfaces with their subsequent mobilisation and direct discharge posing problems for receiving water quality. This review focuses on the impact and mitigation of solids, metals, nutrients and organic pollutants in the runoff deriving from car parks. Variabilities in the discharged pollutant levels and in the potentials for pollutant mitigation complicate an impact assessment of car park runoff. The different available stormwater best management practices and proprietary devices are reported to be capable of reductions of between 20% and almost 100% for both suspended solids and a range of metals. This review contributes to prioritising the treatment options which can achieve the appropriate pollutant reductions whilst conforming to the site requirements of a typical car park. By applying different treatment scenarios to the runoff from a hypothetical car park, it is shown that optimal performance, in terms of ecological benefits for the receiving water, can be achieved using a treatment train incorporating permeable paving and bioretention systems. The review identifies existing research gaps and emphasises the pertinent management practices as well as design issues which are relevant to the mitigation of car park pollution.


Assuntos
Monitoramento Ambiental , Emissões de Veículos/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/prevenção & controle , Chuva , Poluição Química da Água/análise , Qualidade da Água
16.
Heliyon ; 10(9): e30235, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707471

RESUMO

This study investigated the effectiveness of incorporating sulphur (S) with nitrogen (N) and phosphorus (P) for enhancing microbial activity in diesel-contaminated soil during ex-situ bioremediation. While N and P amendments are commonly used to stimulate indigenous microorganisms, the potential benefits of adding S have received less attention. The study found that historically contaminated soil with a moderate concentration of total petroleum hydrocarbons (TPH; 1270 mg/kg) did not have nutrient limitation, and incubation temperature was found to be more critical for enhancing microbial activity. However, soil spiked with an additional 5000 mg/kg of diesel showed increased activity following NP and NPS amendment. Interestingly, NPS amendment at 10 °C resulted in higher microbial activity than at 20 °C, indicating the potential for a tailored nutrient amendment approach to optimize bioremediation in cold conditions. Overall, this study suggests that incorporating S with N and P can enhance microbial activity in diesel-contaminated soil during ex-situ bioremediation. Furthermore, the study highlights the importance of considering incubation temperature in designing a nutrient amendment approach for bioremediation, especially in cold conditions. These findings can guide the design and implementation of future effective bioremediation strategies for petroleum hydrocarbon-contaminated soil.

17.
Sci Total Environ ; 934: 173237, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761940

RESUMO

Per- and poly-fluoroalkyl substances (PFAS) have emerged as newly regulated micropollutants, characterised by extreme recalcitrance and environmental toxicity. Constructed wetlands (CWs), as a nature-based solution, have gained widespread application in sustainable water and wastewater treatment and offer multiple environmental and societal benefits. Despite CWs potential, knowledge gaps persist in their PFAS removal capacities, associated mechanisms, and modelling of PFAS fate. This study carried out a systematic literature review, supplemented by unpublished experimental data, demonstrating the promise of CWs for PFAS removal from the influents of varying sources and characteristics. Median removal performances of 64, 46, and 0 % were observed in five free water surface (FWS), four horizontal subsurface flow (HF), and 18 vertical flow (VF) wetlands, respectively. PFAS adsorption by the substrate or plant root/rhizosphere was deemed as a key removal mechanism. Nevertheless, the available dataset resulted unsuitable for a quantitative analysis. Data-driven models, including multiple regression models and machine learning-based Artificial Neural Networks (ANN), were employed to predict PFAS removal. These models showed better predictive performance compared to various mechanistic models, which include two adsorption isotherms. The results affirmed that artificial intelligence is an efficient tool for modelling the removal of emerging contaminants with limited knowledge of chemical properties. In summary, this study consolidated evidence supporting the use of CWs for mitigating new legacy PFAS contaminants. Further research, especially long-term monitoring of full-scale CWs treating real wastewater, is crucial to obtain additional data for model development and validation.

18.
Heliyon ; 10(11): e32437, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933961

RESUMO

This study aimed to optimise metal extraction from secondary hazardous sources, such as basic oxygen steelmaking dust (BOS-D). Initially, three batch systems approaches, including bioleaching using Acidithiobacillus ferrooxidans, chemical leaching using choline chloride-ethylene glycol (ChCl-EG) and a combined approach were compared. Then, scaling up was evaluated through a semi-continuous bioleaching column system with varied leachate recirculation over 21 days, focusing on Y, Ce, Nd, Li, Co, Cu, Zn, Mn, and Al. Bioleaching outperformed the control experiments within 3 days in the batch, demonstrating the key role of A. ferrooxidans. Chemical leaching conducted with a solid concentration of 12.5 % (w/v) successfully dissolved over 50 % of all metals within 2 h. For rare earth elements (REE), both bioleaching and hybrid leaching outperformed chemical leaching. However, considering factors such as process duration, overall efficiency, and ease of extraction, chemical leaching was the most effective method. Leachate recirculation reached a plateau after 11 days, resulting in extraction efficiency of 39 % when semi-continuous column set-up was used. Interestingly, variations in recirculation rates did not influence the extraction efficiency. Overall, this study emphasizes the considerable potential of bioleaching for metal recovery, but also highlights the need for further studies for enhancing permeability for percolation methods and optimisation, particularly in parameters such as aeration rate, when transitioning to larger scale systems.

19.
Heliyon ; 10(1): e23422, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169809

RESUMO

Zero-valent iron (ZVI) has been extensively studied for its efficacy in removing heavy metals, nitrate, and chlorinated organic compounds from contaminated water. However, its limited effectiveness due to rapid passivation and poor selectivity is prompting for alternative solutions, such as the use of aluminium alloys. In this study, the efficacy of five distinct aluminium alloys, namely Al-Mg, Al-Fe, Al-Cu, and Al-Ni, each comprising 50 % Al by mass at a concentration of 10 g/L, was assessed using copper, nitrate and trichloromethane (TCM) as model contaminants. Results show that chemical pollutants reacted immediately with Al-Mg. On the contrary, the remaining three alloys exhibited a delay of 24 h before demonstrating significant reactivity. Remarkably, Al-Mg alloy reduced nitrate exclusively to ammonium, indicating minimal preference for nitrate reduction to N2. In contrast, the Al-Cu, Al-Ni, and Al-Fe alloys exhibited N2 selectivity of 3 %, 5 %, and 19 %, respectively. The removal efficiency of copper, nitrate and TCM reached 99 % within 24 h, 95 % within 48h and 48 % within 48h, respectively. Noteworthy findings included the correlation between Fe concentration within the Al-Fe alloy and an increased N2 selectivity from 9.3 % to 24.1 %. This resulted in an increase of Fe concentration from 10 % to 58 % albeit with a concurrent reduction in reactivity. Cu2+ removal by Al-Fe alloy occurred via direct electron transfer, while the removal of nitrate and TCM was facilitated by atomic hydrogen generated by the alloy's hydrolysis. Intriguingly, nitrate and TCM suppressed Cu2+ reduction, whereas Cu2+ improved nitrate reduction and TCM degradation. These findings demonstrate the great potential of Al-Mg and Al-Fe alloys as highly efficient agents for water remediation.

20.
Heliyon ; 10(9): e30395, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720749

RESUMO

In Ecuador, the regulatory framework for the remediation of petroleum-contaminated soils is based on predefined concentration endpoints for a selected range of petroleum hydrocarbon compounds. However, such approach may lead to over or under-estimation of the environmental risk posed by contaminated soils. In this study, the end-point remediation criteria according to Ecuadorian Environmental legislation were evaluated using different approaches. The first one was based on Total Extractable Petroleum Hydrocarbons (TEPH) and the second one on Total Bioavailable Petroleum Hydrocarbons (TBPH). Both were compared with ecotoxicological determinations using EC50 -Microtox® bioassay at 5 and 15 min of exposure. The correlation (R2) between EC50 values vs TEPH was of 0.2 and 0.25 for 5 and 15 min, respectively. Meanwhile, R2 between EC50 and TBPH was of 0.9 and 0.65 for 5 and 15 min, respectively, demonstrating a stronger correlation. Our results suggest that a contaminated site where the concentration of the TEPH is higher than the relevant regulatory concentrations may be deemed to present an acceptable risk even though their concentrations exceed the target values in soils. The results also challenge the notion that hormesis is associated with TEPH, contrary to some literature. This study is the first in Ecuador to propose incorporating bioavailability into environmental regulations, highlighting the need for further research to establish realistic and achievable remediation goals based on toxicity studies involving various trophic levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA