Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Dev Biol ; 373(2): 373-82, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23123965

RESUMO

Activating mutations in the KRAS oncogene are associated with three related human syndromes, which vary in hair and skin phenotypes depending on the involved allele. How variations in RAS signals are interpreted during hair and skin development is unknown. In this study, we investigated the developmental and transcriptional response of skin and hair to changes in RAS activity, using mouse genetic models and microarray analysis. While activation of Kras (Kras(G12D)) in the skin had strong effects on hair growth and hair shape, steady state changes in downstream RAS/MAPK effectors were subtle and detected only by transcriptional responses. To model the transcriptional response of multiple developmental pathways to active RAS, the effects of growth factor stimulation were studied in skin explants. Here FGF acutely suppressed Shh transcription within 90 min but had significantly less effect on Eda, WNT, Notch or BMP pathways. Furthermore, in vivo Fgfr2 loss-of-function in the ectoderm caused derepression of Shh, revealing a role for FGF in Shh regulation in the hair follicle. These studies define both dosage sensitive effects of RAS signaling on hair morphogenesis and reveal acute mechanisms for fine-tuning Shh levels in the hair follicle.


Assuntos
Regulação para Baixo/genética , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Proteínas Hedgehog/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/citologia , Folículo Piloso/enzimologia , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/genética , Pele/crescimento & desenvolvimento , Pele/metabolismo , Transcrição Gênica
2.
Mol Metab ; 5(7): 449-458, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27408771

RESUMO

OBJECTIVE: Complex local crosstalk amongst endocrine cells within the islet ensures tight coordination of their endocrine output. This is illustrated by the recent demonstration that the negative feedback control by delta cells within pancreatic islets determines the homeostatic set-point for plasma glucose during mouse postnatal development. However, the close association of islet endocrine cells that facilitates paracrine crosstalk also complicates the distinction between effects mediated directly on beta cells from indirect effects mediated via local intermediates, such as somatostatin from delta cells. METHODS: To resolve this problem, we generated reporter mice that allow collection of pure pancreatic delta cells along with alpha and beta cells from the same islets and generated comprehensive transcriptomes for each islet endocrine cell type. These transcriptomes afford an unparalleled view of the receptors expressed by delta, alpha and beta cells, and allow the prediction of which signal targets which endocrine cell type with great accuracy. RESULTS: From these transcriptomes, we discovered that the ghrelin receptor is expressed exclusively by delta cells within the islet, which was confirmed by fluorescent in situ hybridization and qPCR. Indeed, ghrelin increases intracellular calcium in delta cells in intact mouse islets, measured by GCaMP6 and robustly potentiates glucose-stimulated somatostatin secretion on mouse and human islets in both static and perfusion assays. In contrast, des-acyl-ghrelin at the same dose had no effect on somatostatin secretion and did not block the actions of ghrelin. CONCLUSIONS: These results offer a straightforward explanation for the well-known insulinostatic actions of ghrelin. Rather than engaging beta cells directly, ghrelin engages delta cells to promote local inhibitory feedback that attenuates insulin release. These findings illustrate the power of our approach to resolve some of the long-standing conundrums with regard to the rich feedback that occurs within the islet that is integral to islet physiology and therefore highly relevant to diabetes.

3.
Nat Med ; 21(7): 769-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26076035

RESUMO

The peptide hormone urocortin3 (Ucn3) is abundantly expressed by mature beta cells, yet its physiological role is unknown. Here we demonstrate that Ucn3 is stored and co-released with insulin and potentiates glucose-stimulated somatostatin secretion via cognate receptors on delta cells. Further, we found that islets lacking endogenous Ucn3 have fewer delta cells, reduced somatostatin content, impaired somatostatin secretion, and exaggerated insulin release, and that these defects are rectified by treatment with synthetic Ucn3 in vitro. Our observations indicate that the paracrine actions of Ucn3 activate a negative feedback loop that promotes somatostatin release to ensure the timely reduction of insulin secretion upon normalization of plasma glucose. Moreover, Ucn3 is markedly depleted from beta cells in mouse and macaque models of diabetes and in human diabetic islets. This suggests that Ucn3 is a key contributor to stable glycemic control, whose reduction during diabetes aggravates glycemic volatility and contributes to the pathophysiology of this disease.


Assuntos
Retroalimentação Fisiológica , Insulina/metabolismo , Somatostatina/metabolismo , Urocortinas/metabolismo , Adolescente , Adulto , Idoso , Animais , Criança , Pré-Escolar , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hiperglicemia/genética , Hiperglicemia/patologia , Lactente , Recém-Nascido , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Macaca , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Biológicos , Comunicação Parácrina , Doadores de Tecidos , Transcriptoma/genética , Urocortinas/deficiência , Adulto Jovem
4.
Nat Med ; 18(8): 1286-90, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22772463

RESUMO

Exposure to ultraviolet B (UVB) radiation from the sun can result in sunburn, premature aging and carcinogenesis, but the mechanism responsible for acute inflammation of the skin is not well understood. Here we show that RNA is released from keratinocytes after UVB exposure and that this stimulates production of the inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) from nonirradiated keratinocytes and peripheral blood mononuclear cells (PBMCs). Whole-transcriptome sequencing revealed that UVB irradiation of keratinocytes induced alterations in the double-stranded domains of some noncoding RNAs. We found that this UVB-damaged RNA was sufficient to induce cytokine production from nonirradiated cells, as UVB irradiation of a purified noncoding RNA (U1 RNA) reproduced the same response as the one we observed to UVB-damaged keratinocytes. The responses to both UVB-damaged self-RNAs and UVB-damaged keratinocytes were dependent on Toll-like receptor 3 (TLR3) and Toll-like receptor adaptor molecule 1 (TRIF). In response to UVB exposure, Tlr3(-/-) mice did not upregulate TNF-α in the skin. Moreover, TLR3 was also necessary for UVB-radiation-induced immune suppression. These findings establish that UVB damage is detected by TLR3 and that self-RNA is a damage-associated molecular pattern that serves as an endogenous signal of solar injury.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , RNA de Cadeia Dupla/efeitos da radiação , RNA Nuclear Pequeno/efeitos da radiação , Pele/efeitos da radiação , Receptor 3 Toll-Like/fisiologia , Raios Ultravioleta/efeitos adversos , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Animais , Feminino , Humanos , Inflamação , Interleucina-6/biossíntese , Interleucina-6/genética , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Leucócitos/metabolismo , Leucócitos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/farmacologia , RNA Nuclear Pequeno/genética , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 3 Toll-Like/deficiência , Receptor 3 Toll-Like/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Regulação para Cima/efeitos da radiação
5.
PLoS One ; 6(11): e27603, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110684

RESUMO

The hair of all mammals consists of terminally differentiated cells that undergo a specialized form of apoptosis called cornification. While DNA is destroyed during cornification, the extent to which RNA is lost is unknown. Here we find that multiple types of RNA are incompletely degraded after hair shaft formation in both mouse and human. Notably, mRNAs and short regulatory microRNAs (miRNAs) are stable in the hair as far as 10 cm from the scalp. To better characterize the post-apoptotic RNAs that escape degradation in the hair, we performed sequencing (RNA-seq) on RNA isolated from hair shafts pooled from several individuals. This hair shaft RNA library, which encompasses different hair types, genders, and populations, revealed 7,193 mRNAs, 449 miRNAs and thousands of unannotated transcripts that remain in the post-apoptotic hair. A comparison of the hair shaft RNA library to that of viable keratinocytes revealed surprisingly similar patterns of gene coverage and indicates that degradation of RNA is highly inefficient during apoptosis of hair lineages. The generation of a hair shaft RNA library could be used as months of accumulated transcriptional history useful for retrospective detection of disease, drug response and environmental exposure.


Assuntos
Apoptose , Cabelo/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Análise de Sequência de RNA/métodos , Adulto , Animais , Diferenciação Celular , Sobrevivência Celular , Feminino , Biblioteca Gênica , Cabelo/citologia , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Masculino , Camundongos , MicroRNAs/química , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA