RESUMO
Aberrant phase separation of globular proteins is associated with many diseases. Here, we use a model protein system to understand how the unfolded states of globular proteins drive phase separation and the formation of unfolded protein deposits (UPODs). We find that for UPODs to form, the concentrations of unfolded molecules must be above a threshold value. Additionally, unfolded molecules must possess appropriate sequence grammars to drive phase separation. While UPODs recruit molecular chaperones, their compositional profiles are also influenced by synergistic physicochemical interactions governed by the sequence grammars of unfolded proteins and cellular proteins. Overall, the driving forces for phase separation and the compositional profiles of UPODs are governed by the sequence grammars of unfolded proteins. Our studies highlight the need for uncovering the sequence grammars of unfolded proteins that drive UPOD formation and cause gain-of-function interactions whereby proteins are aberrantly recruited into UPODs.
Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Chaperonas Moleculares/metabolismoRESUMO
Presentation of the variant antigen, Plasmodium falciparum erythrocyte membrane protein 1 (EMP1), at knob-like protrusions on the surface of infected red blood cells, underpins the parasite's pathogenicity. Here we describe a protein PF3D7_0301700 (PTP7), that functions at the nexus between the intermediate trafficking organelle, the Maurer's cleft, and the infected red blood cell surface. Genetic disruption of PTP7 leads to accumulation of vesicles at the Maurer's clefts, grossly aberrant knob morphology, and failure to deliver EMP1 to the red blood cell surface. We show that an expanded low complexity sequence in the C-terminal region of PTP7, identified only in the Laverania clade of Plasmodium, is critical for efficient virulence protein trafficking.
Assuntos
Plasmodium falciparum , Proteínas de Protozoários , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Organelas/metabolismo , Plasmodium falciparum/metabolismo , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismoRESUMO
Hyperphosphorylation and aggregation of the protein tau play key roles in the development of Alzheimer's disease (AD). While the molecular structure of the filamentous tau aggregates has been determined to atomic resolution, there is far less information available about the smaller, soluble aggregates, which are believed to be more toxic. Traditional techniques are limited to bulk measures and struggle to identify individual aggregates in complex biological samples. To address this, we developed a novel single-molecule pull-down-based assay (MAPTau) to detect and characterize individual tau aggregates in AD and control post-mortem brain and biofluids. Using MAPTau, we report the quantity, as well as the size and circularity of tau aggregates measured using super-resolution microscopy, revealing AD-specific differences in tau aggregate morphology. By adapting MAPTau to detect multiple phosphorylation markers in individual aggregates using two-color coincidence detection, we derived compositional profiles of the individual aggregates. We find an AD-specific phosphorylation profile of tau aggregates with more than 80 % containing multiple phosphorylations, compared to 5 % in age-matched non-AD controls. Our results show that MAPTau is able to identify disease-specific subpopulations of tau aggregates phosphorylated at different sites, that are invisible to other methods and enable the study of disease mechanisms and diagnosis.
Assuntos
Doença de Alzheimer , Agregados Proteicos , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/análise , Fosforilação , Imagem Individual de Molécula/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologiaRESUMO
Chaperones and other quality control machinery guard proteins from inappropriate aggregation, which is a hallmark of neurodegenerative diseases. However, how the systems that regulate the "foldedness" of the proteome remain buffered under stress conditions and in different cellular compartments remains incompletely understood. In this study, we applied a FRET-based strategy to explore how well quality control machinery protects against the misfolding and aggregation of "bait" biosensor proteins, made from the prokaryotic ribonuclease barnase, in the nucleus and cytosol of human embryonic kidney 293T cells. We found that those barnase biosensors were prone to misfolding, were less engaged by quality control machinery, and more prone to inappropriate aggregation in the nucleus as compared with the cytosol, and that these effects could be regulated by chaperone Hsp70-related machinery. Furthermore, aggregation of mutant huntingtin exon 1 protein (Httex1) in the cytosol appeared to outcompete and thus prevented the engagement of quality control machinery with the biosensor in the cytosol. This effect correlated with reduced levels of DNAJB1 and HSPA1A chaperones in the cell outside those sequestered to the aggregates, particularly in the nucleus. Unexpectedly, we found Httex1 aggregation also increased the apparent engagement of the barnase biosensor with quality control machinery in the nucleus suggesting an independent implementation of "holdase" activity of chaperones other than DNAJB1 and HSPA1A. Collectively, these results suggest that proteostasis stress can trigger a rebalancing of chaperone abundance in different subcellular compartments through a dynamic network involving different chaperone-client interactions.
Assuntos
Técnicas Biossensoriais , Agregados Proteicos , Citosol/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de ProteínaRESUMO
The accumulation of protein deposits in neurodegenerative diseases has been hypothesized to depend on a metastable subproteome vulnerable to aggregation. To investigate this phenomenon and the mechanisms that regulate it, we measured the solubility of the proteome in the mouse Neuro2a cell line under six different protein homeostasis stresses: 1) Huntington's disease proteotoxicity, 2) Hsp70, 3) Hsp90, 4) proteasome, 5) endoplasmic reticulum (ER)-mediated folding inhibition, and 6) oxidative stress. Overall, we found that about one-fifth of the proteome changed solubility with almost all of the increases in insolubility were counteracted by increases in solubility of other proteins. Each stress directed a highly specific pattern of change, which reflected the remodeling of protein complexes involved in adaptation to perturbation, most notably, stress granule (SG) proteins, which responded differently to different stresses. These results indicate that the protein homeostasis system is organized in a modular manner and aggregation patterns were not correlated with protein folding stability (ΔG). Instead, distinct cellular mechanisms regulate assembly patterns of multiple classes of protein complexes under different stress conditions.
Assuntos
Proteoma/química , Proteostase/fisiologia , Estresse Fisiológico , Animais , Linhagem Celular Tumoral , Proteína Huntingtina/química , Proteína Huntingtina/genética , Ligantes , Camundongos , Mutação , Agregados Proteicos , Dobramento de Proteína , Proteoma/metabolismo , SolubilidadeRESUMO
Maintaining protein homeostasis (proteostasis) is essential for cellular health and is governed by a network of quality control machinery comprising over 800 genes. When proteostasis becomes imbalanced, proteins can abnormally aggregate or become mislocalized. Inappropriate protein aggregation and proteostasis imbalance are two of the central pathological features of common neurodegenerative diseases including Alzheimer, Parkinson, Huntington, and motor neuron diseases. How aggregation contributes to the pathogenic mechanisms of disease remains incompletely understood. Here, we integrate some of the key and emerging ideas as to how protein aggregation relates to imbalanced proteostasis with an emphasis on Huntington disease as our area of main expertise. We propose the term "aggregomics" be coined in reference to how aggregation of particular proteins concomitantly influences the spatial organization and protein-protein interactions of the surrounding proteome. Meta-analysis of aggregated interactomes from various published datasets reveals chaperones and RNA-binding proteins are common components across various disease contexts. We conclude with an examination of therapeutic avenues targeting proteostasis mechanisms.
Assuntos
Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Proteostase , Proteínas de Ligação a RNA/metabolismo , Animais , HumanosRESUMO
Eukaryotic cells respond to heat shock through several regulatory processes including upregulation of stress responsive chaperones and reversible shutdown of cellular activities through formation of protein assemblies. However, the underlying regulatory mechanisms of the recovery of these heat-induced protein assemblies remain largely elusive. Here, we measured the proteome abundance and solubility changes during recovery from heat shock in the mouse Neuro2a cell line. We found that prefoldins and translation machinery are rapidly down-regulated as the first step in the heat shock response. Analysis of proteome solubility reveals that a rapid mobilization of protein quality control machineries, along with changes in cellular energy metabolism, translational activity, and actin cytoskeleton are fundamental to the early stress responses. In contrast, longer term adaptation to stress involves renewal of core cellular components. Inhibition of the Hsp70 family, pivotal for the heat shock response, selectively and negatively affects the ribosomal machinery and delays the solubility recovery of many nuclear proteins. ProteomeXchange: PXD030069.
Assuntos
Censos , Proteoma , Animais , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/fisiologia , Camundongos , Proteoma/análise , SolubilidadeRESUMO
Protein aggregates that result in inclusion formation are a pathological hallmark common to many neurodegenerative diseases, including amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. Under conditions of cellular stress, activation of the heat shock response (HSR) results in an increase in the levels of molecular chaperones and is a first line of cellular defence against inclusion formation. It remains to be established whether neurodegenerative disease-associated proteins and inclusions are themselves capable of inducing an HSR in neuronal cells. To address this, we generated a neuroblastoma cell line that expresses a fluorescent reporter protein under conditions of heat shock transcription factor 1 (HSF1)-mediated HSR induction. We show that the HSR is not induced by exogenous treatment with aggregated forms of recombinant α-synuclein or the G93A mutant of superoxide dismutase-1 (SOD1G93A) nor intracellular expression of SOD1G93A or a pathogenic form of polyglutamine-expanded huntingtin (Htt72Q). These results suggest that pathogenic proteins evade detection or impair induction of the HSR in neuronal cells. A failure of protein aggregation to induce an HSR might contribute to the development of inclusion pathology in neurodegenerative diseases.This article has an associated First Person interview with the first author of the paper.
Assuntos
Doenças Neurodegenerativas , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Humanos , Doenças Neurodegenerativas/genética , Agregados Proteicos , Superóxido Dismutase-1RESUMO
C9ORF72-associated Motor Neuron Disease patients feature abnormal expression of 5 dipeptide repeat (DPR) polymers. Here we used quantitative proteomics in a mouse neuronal-like cell line (Neuro2a) to demonstrate that the Arg residues in the most toxic DPRS, PR and GR, leads to a promiscuous binding to the proteome compared with a relative sparse binding of the more inert AP and GA. Notable targets included ribosomal proteins, translation initiation factors and translation elongation factors. PR and GR comprising more than 10 repeats appeared to robustly stall on ribosomes during translation suggesting Arg-rich peptide domains can electrostatically jam the ribosome exit tunnel during synthesis. Poly-GR also recruited arginine methylases, induced hypomethylation of endogenous proteins, and induced a profound destabilization of the actin cytoskeleton. Our findings point to arginine in GR and PR polymers as multivalent toxins to translation as well as arginine methylation that may explain the dysfunction of biological processes including ribosome biogenesis, mRNA splicing and cytoskeleton assembly.
Assuntos
Arginina/metabolismo , Arginina/toxicidade , Proteína C9orf72/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Metilação/efeitos dos fármacos , Camundongos , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/metabolismoRESUMO
Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones that inhibit amyloid fibril formation; however, their mechanisms of action remain poorly understood. sHSPs comprise a conserved α-crystallin domain flanked by variable N- and C-terminal regions. To investigate the functional contributions of these three regions, we compared the chaperone activities of various constructs of human αB-crystallin (HSPB5) and heat-shock 27-kDa protein (Hsp27, HSPB1) during amyloid formation by α-synuclein and apolipoprotein C-II. Using an array of approaches, including thioflavin T fluorescence assays and sedimentation analysis, we found that the N-terminal region of Hsp27 and the terminal regions of αB-crystallin are important for delaying amyloid fibril nucleation and for disaggregating mature apolipoprotein C-II fibrils. We further show that the terminal regions are required for stable fibril binding by both sHSPs and for mediating lateral fibril-fibril association, which sequesters preformed fibrils into large aggregates and is believed to have a cytoprotective function. We conclude that although the isolated α-crystallin domain retains some chaperone activity against amyloid formation, the flanking domains contribute additional and important chaperone activities, both in delaying amyloid formation and in mediating interactions of sHSPs with amyloid aggregates. Both these chaperone activities have significant implications for the pathogenesis and progression of diseases associated with amyloid deposition, such as Parkinson's and Alzheimer's diseases.
Assuntos
Amiloide/química , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Cadeia B de alfa-Cristalina/química , Amiloide/metabolismo , Apolipoproteína C-II/química , Apolipoproteína C-II/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Domínios Proteicos , Cadeia B de alfa-Cristalina/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismoRESUMO
Proteostasis, or protein homeostasis, encompasses the maintenance of the conformational and functional integrity of the proteome and involves an integrated network of cellular pathways. Molecular chaperones, such as the small heat shock proteins (sHsps), are key elements of the proteostasis network that have crucial roles in inhibiting the aggregation of misfolded proteins. Failure of the proteostasis network can lead to the accumulation of misfolded proteins into intracellular and extracellular deposits. Deposits containing fibrillar forms of α-synuclein (α-syn) are characteristic of neurodegenerative disorders including Parkinson's disease and dementia with Lewy bodies. Here we show that the sHsp Hsp27 (HSPB1) binds to α-syn fibrils, inhibiting fibril growth by preventing elongation. Using total internal reflection fluorescence (TIRF)-based imaging methods, we show that Hsp27 binds along the surface of α-syn fibrils, decreasing their hydrophobicity. Binding of Hsp27 also inhibits cytotoxicity of α-syn fibrils. Our results demonstrate that the ability of sHsps, such as Hsp27, to bind fibrils represents an important mechanism through which they may mitigate cellular toxicity associated with aberrant protein aggregation. Fibril binding may represent a generic mechanism by which chaperone-active sHsps interact with aggregation-prone proteins, highlighting the potential to target sHsp activity to prevent or disrupt the onset and progression of α-syn aggregation associated with α-synucleinopathies.
Assuntos
Proteínas de Choque Térmico HSP27/metabolismo , Neuroblastoma/patologia , Agregados Proteicos , alfa-Sinucleína/metabolismo , Animais , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Humanos , Camundongos , Chaperonas Moleculares , Neuroblastoma/metabolismo , Células Tumorais Cultivadas , alfa-Sinucleína/genéticaRESUMO
The aggregation of α-synuclein (α-syn) into amyloid fibrils is associated with neurodegenerative diseases, collectively referred to as the α-synucleinopathies. In vivo, molecular chaperones, such as the small heat-shock proteins (sHsps), normally act to prevent protein aggregation; however, it remains to be determined how aggregation-prone α-syn evades sHsp chaperone action leading to its disease-associated deposition. This work examines the molecular mechanism by which two canonical sHsps, αB-crystallin (αB-c) and Hsp27, interact with aggregation-prone α-syn to prevent its aggregation in vitro Both sHsps are very effective inhibitors of α-syn aggregation, but no stable complex between the sHsps and α-syn was detected, indicating that the sHsps inhibit α-syn aggregation via transient interactions. Moreover, the ability of these sHsps to prevent α-syn aggregation was dependent on the kinetics of aggregation; the faster the rate of aggregation (shorter the lag phase), the less effective the sHsps were at inhibiting fibril formation of α-syn. Thus, these findings indicate that the rate at which α-syn aggregates in cells may be a significant factor in how it evades sHsp chaperone action in the α-synucleinopathies.
Assuntos
Proteínas de Choque Térmico HSP27/química , Agregados Proteicos , Cadeia B de alfa-Cristalina/química , alfa-Sinucleína/química , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Cadeia B de alfa-Cristalina/metabolismo , alfa-Sinucleína/metabolismoRESUMO
Mammalian small heat-shock proteins (sHSPs) are molecular chaperones that form polydisperse and dynamic complexes with target proteins, serving as a first line of defense in preventing their aggregation into either amorphous deposits or amyloid fibrils. Their apparently broad target specificity makes sHSPs attractive for investigating ways to tackle disorders of protein aggregation. The two most abundant sHSPs in human tissue are αB-crystallin (ABC) and HSP27; here we present high-resolution structures of their core domains (cABC, cHSP27), each in complex with a segment of their respective C-terminal regions. We find that both truncated proteins dimerize, and although this interface is labile in the case of cABC, in cHSP27 the dimer can be cross-linked by an intermonomer disulfide linkage. Using cHSP27 as a template, we have designed an equivalently locked cABC to enable us to investigate the functional role played by oligomerization, disordered N and C termini, subunit exchange, and variable dimer interfaces in ABC. We have assayed the ability of the different forms of ABC to prevent protein aggregation in vitro. Remarkably, we find that cABC has chaperone activity comparable to that of the full-length protein, even when monomer dissociation is restricted through disulfide linkage. Furthermore, cABC is a potent inhibitor of amyloid fibril formation and, by slowing the rate of its aggregation, effectively reduces the toxicity of amyloid-ß peptide to cells. Overall we present a small chaperone unit together with its atomic coordinates that potentially enables the rational design of more effective chaperones and amyloid inhibitors.
Assuntos
Peptídeos beta-Amiloides/toxicidade , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/metabolismo , Sequência de Aminoácidos , Animais , Cristalização , Cisteína/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/metabolismo , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Mamíferos , Dados de Sequência Molecular , Células PC12 , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ratos , Relação Estrutura-AtividadeRESUMO
Protein homeostasis, or proteostasis, is the process of maintaining the conformational and functional integrity of the proteome. The failure of proteostasis can result in the accumulation of non-native proteins leading to their aggregation and deposition in cells and in tissues. The amyloid fibrillar aggregation of the protein α-synuclein into Lewy bodies and Lewy neuritis is associated with neurodegenerative diseases classified as α-synucleinopathies, which include Parkinson's disease and dementia with Lewy bodies. The small heat-shock proteins (sHsps) are molecular chaperones that are one of the cell's first lines of defence against protein aggregation. They act to stabilise partially folded protein intermediates, in an ATP-independent manner, to maintain cellular proteostasis under stress conditions. Thus, the sHsps appear ideally suited to protect against α-synuclein aggregation, yet these fail to do so in the context of the α-synucleinopathies. This review discusses how sHsps interact with α-synuclein to prevent its aggregation and, in doing so, highlights the multi-faceted nature of the mechanisms used by sHsps to prevent the fibrillar aggregation of proteins. It also examines what factors may contribute to α-synuclein escaping the sHsp chaperones in the context of the α-synucleinopathies.
Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/fisiopatologia , alfa-Sinucleína/metabolismo , Animais , HumanosRESUMO
Key to a biologists' capacity to understand data is the ability to make meaningful conclusions about differences in experimental observations. Typically, data are noisy, and conventional methods rely on replicates to average out noise and enable univariate statistical tests to assign p-values. Yet thresholding p-values to determine significance is controversial and often misleading, especially for omics datasets with few replicates. This study introduces PERCEPT, an alternative that transforms data using an ad-hoc scaling factor derived from p-values. By applying this method, low confidence effects are suppressed compared to high confidence ones, enabling clearer patterns to emerge from noisy datasets. The effectiveness of PERCEPT scaling is demonstrated using simulated datasets and published omics studies. The approach reduces the exclusion of datapoints, enhances accuracy, and enables nuanced interpretation of data. PERCEPT is easy to apply for the non-expert in statistics and provides researchers a straightforward way to improve data-driven analyses.
RESUMO
Proteome solubility contains latent information on the nature of protein interaction networks in cells and changes in solubility can provide information on rewiring of networks. Here, we report a simple one-step ultracentrifugation method to separate the soluble and insoluble fraction of the proteome. The method involves quantitative proteomics and a bioinformatics strategy to analyze the changes that arise. Because protein solubility changes are also associated with protein misfolding and aggregation in neurodegenerative disease, we also include a protocol for isolating disease-associated protein aggregates with pulse shape analysis (PulSA) by flow cytometry as a complementary approach that can be used alongside the more general measure of solubility or as a stand-alone approach.
Assuntos
Doenças Neurodegenerativas , Proteômica , Humanos , Proteoma , Proteômica/métodos , Solubilidade , UltracentrifugaçãoRESUMO
The correct spatio-temporal organization of the proteome is essential for cellular homeostasis. However, a detailed mechanistic understanding of this organization and how it is altered in response to external stimuli in the intact cellular environment is as-yet unrealized. 'Protein painting methods provide a means to address this gap in knowledge by monitoring the conformational status of proteins within cells at the proteome-wide scale. Here, we demonstrate the ability of a protein painting method employing tetraphenylethene maleimide (TPE-MI) to reveal proteome network remodeling in whole cells in response to a cohort of commonly used pharmacological stimuli of varying specificity. We report specific, albeit heterogeneous, responses to individual stimuli that coalesce on a conserved set of core cellular machineries. This work expands our understanding of proteome conformational remodeling in response to cellular stimuli, and provides a blueprint for assessing how these conformational changes may contribute to disorders characterized by proteostasis imbalance.
Assuntos
Proteoma , Proteostase , HumanosRESUMO
Methods that assay protein foldedness with proteomics have generated censuses of apparent protein folding stabilities in biological milieu. However, different censuses poorly correlate with each other. Here, we show that the reason for this is that methods targeting foldedness through monitoring amino acid sidechain reactivity also detect changes in conformation and ligand binding, which can be a substantial fraction of the data. We show that the reactivity of only one quarter of cysteine or methionine sidechains in proteins in a urea denaturation curve of mammalian cell lysate can be confidently explained by a two-state unfolding isotherm. Contrary to that expected from unfolding, up to one third of the cysteines decreased reactivity. These cysteines were enriched in proteins with functions relating to unfolded protein stress. One protein, chaperone HSPA8, displayed changes arising from ligand and cofactor binding. Unmasking this hidden information using the approaches outlined here should improve efforts to understand both folding and the remodeling of protein function directly in complex biological settings.
Assuntos
Censos , Proteoma , Animais , Dicroísmo Circular , Cisteína , Cinética , Ligantes , Mamíferos , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Termodinâmica , UreiaRESUMO
PTEN-induced kinase 1 (PINK1) impacts cell health and human pathology through diverse pathways. The strict processing of full-length PINK1 on the outer mitochondrial membrane populates a cytoplasmic pool of cleaved PINK1 (cPINK1) that is constitutively degraded. However, despite rapid proteasomal clearance, cPINK1 still appears to exert quality control influence over the neuronal protein homeostasis network, including protein synthesis and degradation machineries. The cytoplasmic concentration and activity of this molecule is therefore a powerful sensor that coordinates aspects of mitochondrial and cellular health. In addition, full-length PINK1 is retained on the mitochondrial membrane following depolarisation, where it is a powerful inducer of multiple mitophagic pathways. This function is executed primarily through the phosphorylation of several ubiquitin ligases, including its most widely studied substrate Parkin. Furthermore, the phosphorylation of both pro- and anti-apoptotic proteins by mitochondrial PINK1 acts as a pro-cellular survival signal when faced with apoptotic stimuli. Through these varied roles PINK1 directly influences functions central to cell dysfunction in neurodegenerative disease.
Assuntos
Mitofagia , Doenças Neurodegenerativas , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Mutations that cause Huntington's Disease involve a polyglutamine (polyQ) sequence expansion beyond 35 repeats in exon 1 of Huntingtin. Intracellular inclusion bodies of mutant Huntingtin protein are a key feature of Huntington's disease brain pathology. We previously showed that in cell culture the formation of inclusions involved the assembly of disordered structures of mHtt exon 1 fragments (Httex1) and they were enriched with translational machinery when first formed. We hypothesized that nascent mutant Httex1 chains co-aggregate during translation by phase separation into liquid-like disordered aggregates and then convert to more rigid, amyloid structures. Here we further examined the mechanisms of inclusion assembly in a human epithelial kidney (AD293) cell culture model. We found mHttex1 did not appear to stall translation of its own nascent chain, or at best was marginal. We also found the inclusions appeared to recruit low levels of RNA but there was no difference in enrichment between early formed and mature inclusions. Proteins involved in translation or ribosome quality control were co-recruited to the inclusions (Ltn1 Rack1) compared to a protein not anticipated to be involved (NACAD), but there was no major specificity of enrichment in the early formed inclusions compared to mature inclusions. Furthermore, we observed co-aggregation with other proteins previously identified in inclusions, including Upf1 and chaperone-like proteins Sgta and Hspb1, which also suppressed aggregation at high co-expression levels. The newly formed inclusions also contained immobile mHttex1 molecules which points to the disordered aggregates being mechanically rigid prior to amyloid formation. Collectively our findings show little evidence that inclusion assembly arises by a discrete clustering of stalled nascent chains and associated quality control machinery. Instead, the machinery appear to be recruited continuously, or secondarily, to the nucleation of inclusion formation.