Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Anat ; 244(4): 628-638, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38168875

RESUMO

Odontocetes primarily rely on fish, cephalopods, and crustaceans as their main source of nutrition. In the digestive system, their polygastric complex exhibits similarities to that of their closest terrestrial relatives such as cows, sheep, and giraffes, while the entero-colic tract shares similarities with terrestrial carnivores. The morphology, caliber, and structure of the odontocete intestine are relatively constant, and, since there is no caecum, a distinction between the small and large intestine and their respective subdivisions is difficult. To address this issue, we used the intestinal vascularization pattern, specifically the course and branching of the celiac artery (CA) and the cranial and caudal mesenteric arteries (CrMA and CdMA). A series of pictures and dissections of 10 bottlenose dolphins (Tursiops truncatus) were analyzed. Additionally, we performed a cast by injecting colored polyurethane foam in both arteries and veins to measure the caliber of the arteries and clarify their monopodial or dichotomous branching. Our results showed the presence of multiple duodenal arteries (DAs) detaching from the CA. The CrMA gave origin to multiple jejunal arteries, an ileocolic artery (ICA), and, in six cases, a CdMA. In four specimens, the CdMA directly originated from the abdominal aorta. The ICA gave rise to the mesenteric ileal branches (MIB) and mesenteric anti-ileal branches and the right colic arteries (RCA) and the middle colic arteries. From the CdMA originated the left colic and cranial rectal arteries (LCA and CrRA). The measurements revealed a mixed monopodial and dichotomous branching scheme. The analysis of the arteries and their branching gave us an instrument, based on comparative anatomy, to distinguish between the different intestinal compartments. We used the midpoint of anastomoses between MIB and RCA to indicate the border between the small and the large intestine, and the midpoint of anastomoses between LCA and CrRA, to tell the colon from the rectum. This pattern suggested an elongation of the duodenum and a shortening of the colic tract that is still present in this species. These findings might be related to the crucial need to possess a long duodenal tract to digest prey ingested whole without chewing. A short aboral part is also functional to avoid gas-producing colic fermentation. The rare origin of the CdMA on the CrMA might instead be a consequence of the cranial thrust of the abdominopelvic organs related to the loss of the pelvic girdle that occurred during the evolution of cetaceans.


Assuntos
Golfinho Nariz-de-Garrafa , Cólica , Feminino , Animais , Bovinos , Ovinos , Intestinos , Artérias Mesentéricas/anatomia & histologia , Veias
2.
J Anat ; 238(1): 1-12, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32885430

RESUMO

The present study analyses the organization and selected neurochemical features of the claustrum and visual cortex of the sheep, based on the patterns of calcium-binding proteins expression. Connections of the claustrum with the visual cortex have been studied by tractography. Parvalbumin-immunoreactive (PV-ir) and Calbindin-immunoreactive (CB-ir) cell bodies increased along the rostro-caudal axis of the nucleus. Calretinin (CR)-labeled somata were few and evenly distributed along the rostro-caudal axis. PV and CB distribution in the visual cortex was characterized by larger round and multipolar cells for PV, and more bitufted neurons for CB. The staining pattern for PV was the opposite of that of CR, which showed densely stained but rare cell bodies. Tractography shows the existence of connections with the caudal visual cortex. However, we detected no contralateral projection in the visuo-claustral interconnections. Since sheep and goats have laterally placed eyes and a limited binocular vision, the absence of contralateral projections could be of prime importance if confirmed by other studies, to rule out the role of the claustrum in stereopsis.


Assuntos
Claustrum/anatomia & histologia , Neurônios/metabolismo , Ovinos/anatomia & histologia , Córtex Visual/anatomia & histologia , Animais , Calbindina 2/metabolismo , Calbindinas/metabolismo , Claustrum/metabolismo , Feminino , Vias Neurais/anatomia & histologia , Vias Neurais/metabolismo , Parvalbuminas/metabolismo , Córtex Visual/metabolismo
3.
J Anat ; 238(4): 942-955, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33099774

RESUMO

Vibrissae are tactile hairs found mainly on the rostrum of most mammals. The follicle, which is surrounded by a large venous sinus, is called "follicle-sinus complex" (FSC). This complex is highly innervated by somatosensitive fibers and reached by visceromotor fibers that innervate the surrounding vessels. The surrounding striated muscles receive somatomotor fibers from the facial nerve. The bottlenose dolphin (Tursiops truncatus), a frequently described member of the delphinid family, possesses this organ only in the postnatal period. However, information on the function of the vibrissal complex in this latter species is scarce. Recently, psychophysical experiments on the river-living Guiana dolphin (Sotalia guianensis) revealed that the FSC could work as an electroreceptor in murky waters. In the present study, we analyzed the morphology and innervation of the FSC of newborn (n = 8) and adult (n = 3) bottlenose dolphins. We used Masson's trichrome stain and antibodies against neurofilament 200 kDa (NF 200), protein gene product (PGP 9.5), substance P (SP), calcitonin gene-related peptide, and tyrosine hydroxylase (TH) to characterize the FSC of the two age classes. Masson's trichrome staining revealed a structure almost identical to that of terrestrial mammals except for the fact that the FSC was occupied only by a venous sinus and that the vibrissal shaft lied within the follicle. Immunostaining for PGP 9.5 and NF 200 showed somatosensory fibers finishing high along the follicle with Merkel nerve endings and free nerve endings. We also found SP-positive fibers mostly in the surrounding blood vessels and TH both in the vessels and in the mesenchymal sheath. The FSC of the bottlenose dolphin, therefore, possesses a rich somatomotor innervation and a set of peptidergic visceromotor fibers. This anatomical disposition suggests a mechanoreceptor function in the newborns, possibly finalized to search for the opening of the mother's nipples. In the adult, however, this structure could change into a proprioceptive function in which the vibrissal shaft could provide information on the degree of rotation of the head. In the absence of psychophysical experiments in this species, the hypothesis of electroreception cannot be rejected.


Assuntos
Golfinho Nariz-de-Garrafa/anatomia & histologia , Vibrissas/inervação , Animais , Animais Recém-Nascidos , Evolução Biológica , Golfinho Nariz-de-Garrafa/crescimento & desenvolvimento , Feminino , Masculino , Vibrissas/crescimento & desenvolvimento
4.
J Exp Biol ; 222(Pt 5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30760548

RESUMO

The retia mirabilia are vascular nets composed of small vessels dispersed among numerous veins, allowing blood storage, regulation of flow and pressure damping effects. Here, we investigated their potential role during the diving phase of the bottlenose dolphin (Tursiops truncatus). To this effect, the whole vertebral retia mirabilia of a series of dolphins were removed during post-mortem analysis and examined to assess vessel diameters, and estimate vascular volume and flow rate. We formulated a new hemodynamic model to help clarify vascular dynamics throughout the diving phase, based on the total blood volume of a bottlenose dolphin, and using data available about the perfusion of the main organs and body systems. We computed the minimum blood perfusion necessary to the internal organs, and the stroke volume and cardiac output during the surface state. We then simulated breath-holding conditions and perfusion of the internal organs under the diving-induced bradycardia and reduction of stroke volume and cardiac output, using 10 beats min-1 as the limit for the heart rate for an extended dive of over 3 min. Within these simulated conditions, the retia mirabilia play a vital role as reservoirs of oxygenated blood that permit functional performances and survival of the heart and brain. Our theoretical model, based on the actual blood capacity of the retia mirabilia and available data on organ perfusion, considers the dynamic trend of vasoconstriction during the diving phase and may represent a baseline for future studies on the diving physiology of dolphins and especially for the blood supply to their brain.


Assuntos
Circulação Sanguínea , Golfinho Nariz-de-Garrafa/fisiologia , Encéfalo/fisiologia , Vasos Coronários/fisiologia , Mergulho/fisiologia , Coração/fisiologia , Animais , Golfinho Nariz-de-Garrafa/sangue , Encéfalo/irrigação sanguínea , Coração/anatomia & histologia , Hemodinâmica , Modelos Cardiovasculares
5.
J Anat ; 232(1): 158-166, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28967096

RESUMO

Over the past decades, the number of studies employing the pig brain as a model for neurochemical studies has dramatically increased. The key translational features of the pig brain are the similarities with the cortical and subcortical structures of the human brain. In addition, the caudalmost part of the pig claustrum (CL) is characterized by a wide enlargement called posterior puddle, an ideal structure for physiological recordings. Several hypotheses have been proposed for CL function, the key factor being its reciprocal connectivity with most areas of the cerebral cortex and selected subcortical structures. However, afferents from the brainstem could also be involved. The brainstem is the main source of catecholaminergic axons that play an important neuromodulatory action in different brain functions. To study a possible role of the CL in catecholaminergic pathways, we analyzed the presence and the distribution of afferents immunostained with antibodies against tyrosine hydroxylase (TH) and dopamine betahydroxylase (DBH) in the pig CL. Here we show that the CL contains significant TH immunoreactive axons contacting perikarya, whereas projections staining for DBH are very scarce. Our findings hint at the possibility that brainstem catecholaminergic afferents project to the CL, suggesting (i) a possible role of this nucleus in functions controlled by brainstem structures; and, consequently, (ii) its potential involvement in the pathophysiology of neurodegenerative pathologies, including Parkinson's disease (PD).


Assuntos
Neurônios Adrenérgicos/enzimologia , Gânglios da Base/citologia , Vias Neurais/citologia , Animais , Suínos
6.
Neuroendocrinology ; 104(1): 51-71, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26882349

RESUMO

In the mammalian brain, the differentiation of neural cells and the developmental organization of the underlying circuitry are influenced by steroid hormones. The estrogen 17-ß estradiol (E2) is one of the most potent regulators of neural growth during prenatal life, synthetized locally from steroid precursors including prenatal testicular testosterone. Estradiol promotes brain differentiation counting sexually dimorphic neural circuits by binding to the estrogen receptors, ER-α and ER-ß. The cerebellum has been described as a site of estrogen action and a potentially sexually dimorphic area. The goal of this study was to analyze the capacity of E2 to affect the growth of male and female fetal bovine cerebellar granule. We performed primary cultures of fetal cerebellar granules, and verified the mRNA expression of the ER-α and ER-ß in both sexes. Moreover, the distribution of ERs in the male and female cerebellar granules of the second fetal stage was characterized by immunohistochemistry. We measured morphological parameters in presence (or absence) of estradiol administration, focusing on the variations of the dendritic branching pattern of granule neurons. By using the nonparametric combination and permutation testing approach, we proposed a sophisticated multivariate statistical analysis to demonstrate that E2 induces multifarious and dimorphic changes in the granule cells. E2 exerts trophic effects in both female and male granules and this effect is stronger in female. Male granules treated with E2 became similar to female control granule. Bos taurus species has a long gestation and a large brain that offers an interesting alternative in comparative neuroscience.


Assuntos
Cerebelo/citologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Neurônios/efeitos dos fármacos , Caracteres Sexuais , Análise de Variância , Animais , Bovinos , Células Cultivadas , Embrião de Mamíferos , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , RNA Mensageiro , Estatísticas não Paramétricas , Tubulina (Proteína)/metabolismo
7.
Brain Behav Evol ; 90(3): 193-210, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28768268

RESUMO

The present study focuses on the relationship between neocortical structures and functional aspects in three selected mammalian species. Our aim was to compare cortical layering and neuron density in the projection areas (somatomotor, M1; somatosensory, S1; auditory, A1; and visual, V1; each in a wider sense). Morphological and design-based stereological analysis was performed in the wild boar (Sus scrofa scrofa) as a representative terrestrial hoofed animal (artiodactyl) and the common dolphin (Delphinus delphis) as a highly derived related aquatic mammal (cetartiodactyl). For comparison, we included the human (Homo sapiens) as a well-documented anthropoid primate. In the cortex of many mammals, layer IV (inner granular layer) is the main target of specific thalamocortical inputs while layers III and V are the main origins of neocortical projections. Because the fourth layer is indistinct or mostly lacking in the primary neocortex of the wild boar and dolphins, respectively, we analyzed the adjacent layers III and V in these animals. In the human, all the three layers were investigated separately. The stereological data show comparatively low neuron densities in all areas of the wild boar and high cell counts in the human (as expected), particularly in the primary visual cortex. The common dolphin, in general, holds an intermediate position in terms of neuron density but exhibits higher values than the human in a few layers. With respect to the situation in the wild boar, stereological neuron counts in the dolphin are consistently higher, with a maximum in layer III of the visual cortex. The extended auditory neocortical field in dolphins and the hypertrophic auditory pathway indicate secondary neurobiological adaptations to their aquatic habitat during evolution. The wild boar, however, an omnivorous quadruped terrestrial mammal, shows striking specializations as to the sensorimotor neurobiology of the snout region.


Assuntos
Neocórtex/anatomia & histologia , Neocórtex/citologia , Adaptação Fisiológica , Animais , Córtex Auditivo/anatomia & histologia , Vias Auditivas/anatomia & histologia , Vias Auditivas/fisiologia , Contagem de Células , Golfinhos Comuns/anatomia & histologia , Humanos/anatomia & histologia , Mamíferos/anatomia & histologia , Neurônios/fisiologia , Especificidade da Espécie , Sus scrofa/anatomia & histologia , Córtex Visual/anatomia & histologia
8.
Brain Behav Evol ; 83(1): 9-16, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24335261

RESUMO

The horse is a common domestic animal whose anatomy has been studied since the XVI century. However, a modern neuroanatomy of this species does not exist and most of the data utilized in textbooks and reviews derive from single specimens or relatively old literature. Here, we report information on the brain of Equus caballus obtained by sampling 131 horses, including brain weight (as a whole and subdivided into its constituents), encephalization quotient (EQ), and cerebellar quotient (CQ), and comparisons with what is known about other relevant species. The mean weight of the fresh brains in our experimental series was 598.63 g (SEM ± 7.65), with a mean body weight of 514.12 kg (SEM ± 15.42). The EQ was 0.78 and the CQ was 0.841. The data we obtained indicate that the horse possesses a large, convoluted brain, with a weight similar to that of other hoofed species of like mass. However, the shape of the brain, the noteworthy folding of the neocortex, and the peculiar longitudinal distribution of the gyri suggest an evolutionary specificity at least partially separate from that of the Cetartiodactyla (even-toed mammals and cetaceans) with whom Perissodactyla (odd-toed mammals) are often grouped.


Assuntos
Encéfalo/anatomia & histologia , Cavalos/anatomia & histologia , Animais , Córtex Cerebral/anatomia & histologia , Feminino , Masculino
9.
Magn Reson Imaging ; 108: 104-110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336113

RESUMO

Invasive neuronal tract-tracing is not permitted in very large or endangered animals. This is especially the case in marine mammals like dolphins. Diffusion-weighted imaging of fiber tracts could be an alternative if feasible even in brains that have been fixed in formalin for a long time. This currently is a problem, especially for detecting crossing fibers. We applied a state-of-the-art algorithm of Diffusion-weighted imaging called Constrained Spherical Deconvolution on diffusion data of three fixed brains of bottlenose dolphins using clinical human MRI parameters and were able to identify complex fiber patterns within a voxel. Our findings indicate that in order to maintain the structural integrity of the tissue, short-term post-mortem fixation is necessary. Furthermore, pre-processing steps are essential to remove the classical Diffusion-weighted imaging artifacts from images: however, the algorithm is still able to resolve fiber tracking in regions with various signal intensities. The described imaging technique reveals complex fiber patterns in cetacean brains that have been preserved in formalin for extended periods of time and thus opens a new window into our understanding of cetacean neuroanatomy.


Assuntos
Golfinhos , Animais , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Neurônios , Formaldeído
10.
Front Neuroanat ; 18: 1321025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379680

RESUMO

Introduction: The entorhinal cortex has been shown to be involved in high-level cognitive functions in terrestrial mammals. It can be divided into two main areas: the lateral entorhinal area (LEA) and the medial entorhinal area (MEA). Understanding of its structural organization in cetaceans is particularly important given the extensive evidence for their cognitive abilities. The present study describes the cytoarchitectural and immunohistochemical properties of the entorhinal cortex of the bottlenose dolphin (Tursiops truncatus, Montagu, 1821), perhaps the most studied cetacean species and a paradigm for dolphins and other small cetaceans. Methods: Four bottlenose dolphins' entorhinal cortices were processed. To obtain a precise overview of the organization of the entorhinal cortex we used thionin staining to study its laminar and regional organization, and immunoperoxidase technique to investigate the immunohistochemical distribution of three most commonly used calcium-binding proteins (CBPs), calbindin D-28k (CB), calretinin (CR) and parvalbumin (PV). Entorhinal cortex layers thickness were measured, morphological and morphometric analysis for each layer were conducted and statistically compared. Results: Six layers in both the LEA and MEA were identified. The main difference between the LEA and the MEA is observed in layers II and III: the neurons in layer II of the LEA were denser and larger than the neurons in layer II of MEA. In addition, a relatively cell-free zone between layers II and III in LEA, but not in MEA, was observed. The immunohistochemical distribution of the three CBPs, CB, CR and PV were distinct in each layer. The immunostaining pattern of CR, on one side, and CB/PV, on the other side, appeared to be distributed in a complementary manner. PV and CB immunostaining was particularly evident in layers II and III, whereas CR immunoreactive neurons were distributed throughout all layers, especially in layers V and VI. Immunoreactivity was expressed by neurons belonging to different morphological classes: All CBPs were expressed in non-pyramidal neurons, but CB and CR were also found in pyramidal neurons. Discussion: The morphological characteristics of pyramidal and non-pyramidal neurons in the dolphin entorhinal cortex are similar to those described in the entorhinal cortex of other species, including primates and rodents. Interestingly, in primates, rodents, and dolphins, most of the CBP-containing neurons are found in the superficial layers, but the large CR-ir neurons are also abundant in the deep layers. Layers II and III of the entorhinal cortex contain neurons that give rise to the perforant pathway, which conveys most of the cortical information to the hippocampal formation. From the hippocampal formation, reciprocal projections are directed back to the deep layer of the entorhinal cortex, which distributes the information to the neocortex and subcortical area. Our data reveal that in the dolphin entorhinal cortex, the three major CBPs label morphologically heterogeneous groups of neurons that may be involved in the information flow between entorhinal input and output pathways.

11.
Anat Histol Embryol ; 53(1): e12986, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37843436

RESUMO

The Mediterranean monk seal (Monachus monachus, Hermann, 1779) is an endangered species of pinniped endemic to few areas of the Mediterranean Sea. Extensive hunting and poaching over the last two centuries have rendered it a rare sight, scattered mainly in the Aegean Sea and the western coast of North Africa. In a rare event, a female monk seal calf stranded and died in southern Italy (Brindisi, Puglia). During due necropsy, the brain was extracted and fixed. The present report is the first of a monk seal brain. The features reported are remarkably typical of a true seal brain, with some specific characteristics. The brain cortical circonvolutions, main fissures and the external parts are described, and an EQ was calculated. Overall, this carnivore adapted to aquatic life shares some aspects of its neuroanatomy and physiology with other seemingly distant aquatic mammals.


Assuntos
Caniformia , Monges , Focas Verdadeiras , Feminino , Animais , Humanos , Focas Verdadeiras/anatomia & histologia , Encéfalo , Espécies em Perigo de Extinção
12.
Animals (Basel) ; 13(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958185

RESUMO

Throughout evolution, odontocete vision has had to readapt to the aquatic environment, which has had far-reaching effects on ocular anatomy and neurology. The most prominent features include the iris with an operculum, a well-developed choroid, the presence of giant ganglion cells in the retina, and the hemispherical shape of the thick eyecup. In the present study, the optic nerve and the retina were comparatively studied in Odontoceti (Cuvier's beaked whale, common bottlenose dolphin, false killer whale, long-finned pilot whale, Risso's dolphin, striped dolphin), the semi-aquatic common hippopotamus, and the fully terrestrial bovine. Cross-sections of the tissue were treated with histological and immunohistochemical techniques. Substantial differences were seen between the odontocetes and the reference species as well as within the cetaceans. The morphological structure of the optic nerve mainly appeared species specific, while the density of retinal ganglion cells was significantly higher in the terrestrial bovine than in the cetaceans. However, some typical characteristics of the cetacean retina were absent: the giant ganglion cells and the high retinal thickness. Immunohistochemical research showed varying degrees of neurofilament 200 expression in the retinal ganglion cells, while calretinin was only expressed in those of the common bottlenose dolphin and bovine.

13.
Brain Struct Funct ; 228(8): 1963-1976, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660322

RESUMO

Cetaceans are well known for their remarkable cognitive abilities including self-recognition, sound imitation and decision making. In other mammals, the prefrontal cortex (PFC) takes a key role in such cognitive feats. In cetaceans, however, a PFC could up to now not be discerned based on its usual topography. Classical in vivo methods like tract tracing are legally not possible to perform in Cetacea, leaving diffusion-weighted imaging (DWI) as the most viable alternative. This is the first investigation focussed on the identification of the cetacean PFC homologue. In our study, we applied the constrained spherical deconvolution (CSD) algorithm on 3 T DWI scans of three formalin-fixed brains of bottlenose dolphins (Tursiops truncatus) and compared the obtained results to human brains, using the same methodology. We first identified fibres related to the medio-dorsal thalamic nuclei (MD) and then seeded the obtained putative PFC in the dolphin as well as the known PFC in humans. Our results outlined the dolphin PFC in areas not previously studied, in the cranio-lateral, ectolateral and opercular gyri, and furthermore demonstrated a similar connectivity pattern between the human and dolphin PFC. The antero-lateral rotation of the PFC, like in other areas, might be the result of the telescoping process which occurred in these animals during evolution.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Encéfalo , Algoritmos , Cognição
14.
Animals (Basel) ; 14(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38200782

RESUMO

Infrared thermography (IRT) has been recently applied to measure lacrimal caruncle temperature non-invasively since this region is related to the sympathetic response, and it seems a promising technique that is able to infer negative emotions in sheep (e.g., fear). However, the scientific literature so far is limited in understanding whether a caruncle's temperature changes also in response to positive emotional states in sheep. Through classical conditioning, we aimed to assess how a positive or a negative event affects the physiological (lacrimal caruncle temperature measured with IRT and cortisol levels) and behavioral responses of sheep (ear position). Fourteen ewes from the same flock were randomly assigned to two treatment groups: positive (n = 7) and negative (n = 7). Each group was then trained through classical conditioning to associate a neutral auditory (ring bell) stimulus to an oncoming event: for the positive group, the presence of a food reward (maize grains), while for the negative one, the opening of an umbrella. After three weeks of training, before (at rest) and after (post-treatment), lacrimal caruncle temperature was non-invasively measured via IRT, and saliva samples were gently collected to measure cortisol levels. During treatment, sheep behavior was videorecorded and then analyzed using a focal animal sampling technique. At rest, the eye's lacrimal caruncle temperature was similar in both groups, while post-treatment, a significant increase was shown only in the negative group (t-test; p = 0.017). In the anticipation phase, sheep in the positive group kept their ears forward longer compared to those in the negative one (Mann-Whitney; p < 0.014), 8.3 ± 2.1 s and 5.2 ± 4.2 s, respectively. The behavioral response observed reflects a learnt association between a neutral stimulus and events with different emotional valence. Cortisol concentration slightly increased in both groups post-treatment. Our results confirm that IRT is a non-invasive technique that can be useful when applied to assess how positive and negative events may affect the physiological response in sheep.

15.
Front Neuroanat ; 17: 1330384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250022

RESUMO

Introduction: The auditory system of dolphins and whales allows them to dive in dark waters, hunt for prey well below the limit of solar light absorption, and to communicate with their conspecific. These complex behaviors require specific and sufficient functional circuitry in the neocortex, and vicarious learning capacities. Dolphins are also precocious animals that can hold their breath and swim within minutes after birth. However, diving and hunting behaviors are likely not innate and need to be learned. Our hypothesis is that the organization of the auditory cortex of dolphins grows and mature not only in the early phases of life, but also in adults and aging individuals. These changes may be subtle and involve sub-populations of cells specificall linked to some circuits. Methods: In the primary auditory cortex of 11 bottlenose dolphins belonging to three age groups (calves, adults, and old animals), neuronal cell shapes were analyzed separately and by cortical layer using custom computer vision and multivariate statistical analysis, to determine potential minute morphological differences across these age groups. Results: The results show definite changes in interneurons, characterized by round and ellipsoid shapes predominantly located in upper cortical layers. Notably, neonates interneurons exhibited a pattern of being closer together and smaller, developing into a more dispersed and diverse set of shapes in adulthood. Discussion: This trend persisted in older animals, suggesting a continuous development of connections throughout the life of these marine animals. Our findings further support the proposition that thalamic input reach upper layers in cetaceans, at least within a cortical area critical for their survival. Moreover, our results indicate the likelihood of changes in cell populations occurring in adult animals, prompting the need for characterization.

16.
Front Vet Sci ; 10: 1243325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789868

RESUMO

Biosensors applied in veterinary medicine serve as a noninvasive method to determine the health status of animals and, indirectly, their level of welfare. Near infrared spectroscopy (NIRS) has been suggested as a technology with this application. This study presents preliminary in vivo time domain NIRS measurements of optical properties (absorption coefficient, reduced scattering coefficient, and differential pathlength factor) and hemodynamic parameters (concentration of oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin, and tissue oxygen saturation) of tissue domestic animals, specifically of skeletal muscle (4 dogs and 6 horses) and head (4 dogs and 19 sheep). The results suggest that TD NIRS in vivo measurements on domestic animals are feasible, and reveal significant variations in the optical and hemodynamic properties among tissue types and species. In horses the different optical and hemodynamic properties of the measured muscles can be attributed to the presence of a thicker adipose layer over the muscle in the Longissimus Dorsi and in the Gluteus Superficialis as compared to the Triceps Brachii. In dogs the absorption coefficient is higher in the head (temporalis musculature) than in skeletal muscles. The smaller absorption coefficient for the head of the sheep as compared to the head of dogs may suggest that in sheep we are indeed reaching the brain cortex while in dog light penetration can be hindered by the strongly absorbing muscle covering the cranium.

17.
Cell Tissue Res ; 350(1): 109-18, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22814863

RESUMO

Estrogens diversely affect various physiological processes by genomic or non-genomic mechanisms, in both excitable and non-excitable cells. Additional to the trophic effects of estrogens promoting cell growth and differentiation, recent experimental evidence highlights their involvement in the regulation of intracellular Ca(2+) homeostasis. The effects of estrogens on excitable cells are well documented. However, these steroids also influence numerous physiological events in non-excitable cells, such as fibroblasts or vascular endothelial cells. We have focused our attention on an immortalized endothelial-like cell line derived from fetal bovine cerebellum. Estradiol (E(2)) effects on intracellular Ca(2+) homeostasis were tested by varying the exposure time to the hormone (8, 24, 48 h). Calcium measurements were performed with genetically encoded Ca(2+) probes (Cameleons) targeted to the main subcellular compartments involved in intracellular Ca(2+) homeostasis (cytosol, endoplasmic reticulum, mitochondria). Mitochondrial Ca(2+) uptake significantly decreased after 48-h exposure to E(2), whereas cytosolic and endoplasmic reticulum responses were unaffected. The effect of E(2) on mitochondrial Ca(2+) handling was blocked by ICI 182,780, a pure estrogen receptor antagonist, suggesting that the effect was estrogen-receptor-mediated. To evaluate whether the decrease of Ca(2+) uptake affected mitochondrial membrane potential (ΔΨm), cells were monitored in the presence of tetra-methyl-rhodamine-methylester; no significant changes were seen between cells treated with E(2) and controls. To investigate a mechanism of action, we assessed the possibile involvement of the permeability transition pore (PTP), an inner mitochondrial membrane channel influencing energy metabolism and cell viability. We treated cells with CyclosporinA (CsA), which binds to the matrix chaperone cyclophilin-D and regulates PTP opening. CsA reversed the effects of a 48-h treatment with E(2), suggesting a possible transcriptional modulation of proteins involved in the mitochondrial permeability transition process.


Assuntos
Encéfalo/citologia , Cálcio/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Estradiol/farmacologia , Homeostase/efeitos dos fármacos , Espaço Intracelular/metabolismo , Animais , Bovinos , Linhagem Celular , Citosol/efeitos dos fármacos , Citosol/metabolismo , DNA Complementar/genética , Células Endoteliais/efeitos dos fármacos , Imuno-Histoquímica , Espaço Intracelular/efeitos dos fármacos , Cinética , Masculino , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Receptores de Estrogênio/metabolismo , Transfecção
18.
Gen Comp Endocrinol ; 177(2): 238-45, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22554922

RESUMO

The pineal gland is generally believed to be absent in cetaceans, although few and subsequently unconfirmed reports described the organ in some species. The recent description of a complete and photographed pineal body in a bottlenose dolphin (Tursiops truncatus) prompted us to examine a series of 29 brains of the same species, but no gland was found. We then decided to investigate if the main product of the gland, melatonin, was nevertheless produced and present in the plasma of this species. We collected plasma and serum samples from a series of captive bottlenose dolphins for a period of 7 months spanning from winter to summer and we determined the indoleamine concentration by radio-immunoassay (RIA). The results demonstrated for the first time a quantitative assessment of melatonin production in the blood of a cetacean. Melatonin levels were comparable to those of terrestrial mammals (5.15-27.74 pg/ml daylight concentration), with indications of both seasonal and daily variation although the presence of a circadian rhythm remains uncertain. Immunohistochemical analyses using as a marker hydroxyindole-O-methyl-transferase (HIOMT, the key enzyme involved in the biosynthesis of the hormone), suggested extrapineal melatonin production by the retina, the Harderian gland and the gut. The enzyme was unequivocally localized in all the three tissues, and, specifically, ganglion cells in the retina showed a very strong HIOMT-immunoreactivity. Our results suggest that further research might reveal unexplored aspects of melatonin production in cetaceans and deserves special attention and further efforts.


Assuntos
Acetilserotonina O-Metiltransferasa/metabolismo , Golfinho Nariz-de-Garrafa , Melatonina/sangue , Melatonina/metabolismo , Glândula Pineal/metabolismo , Acetilserotonina O-Metiltransferasa/análise , Animais , Golfinho Nariz-de-Garrafa/sangue , Golfinho Nariz-de-Garrafa/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/patologia , Cetáceos/sangue , Cetáceos/metabolismo , Feminino , Glândula de Harder/metabolismo , Abrigo para Animais , Masculino , Concentração Osmolar , Glândula Pineal/química , Glândula Pineal/enzimologia , Glândula Pineal/patologia , Retina/metabolismo , Fixação de Tecidos
19.
Brain Struct Funct ; 227(5): 1871-1891, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35347401

RESUMO

Areas dedicated to higher brain functions such as the orbitofrontal cortex (OFC) are thought to be unique to hominidae. The OFC is involved in social behavior, reward and punishment encoding and emotional control. Here, we focused on the putative corresponding area in the sheep to assess its homology to the OFC in humans. We used classical histology in five sheep (Ovis aries) and four chimpanzees (Pan troglodytes) as a six-layered-cortex primate, and Diffusion Tensor Imaging (DTI) in three sheep and five human brains. Nissl's staining exhibited a certain alteration in cortical lamination since no layer IV was found in the sheep. A reduction of the total cortical thickness was also evident together with a reduction of the prevalence of layer one and an increased layer two on the total thickness. Tractography of the sheep OFC, on the other hand, revealed similarities both with human tracts and those described in the literature, as well as a higher number of cortico-cortical fibers connecting the OFC with the visual areas in the right hemisphere. Our results evidenced the presence of the basic components necessary for complex abstract thought in the sheep and a pronounced laterality, often associated with greater efficiency of a certain function, suggested an evolutionary adaptation of this prey species.


Assuntos
Imagem de Tensor de Difusão , Neuroquímica , Animais , Encéfalo , Imagem de Tensor de Difusão/métodos , Humanos , Pan troglodytes , Córtex Pré-Frontal/diagnóstico por imagem , Ovinos
20.
Animals (Basel) ; 12(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35158671

RESUMO

The killer whale (Orcinus orca, Linnaeus, 1958) is the largest extant delphinid. Despite its worldwide distribution in the wild and in dolphinariums, its anatomy remains relatively poorly described. In the present study, we describe the detailed morphology of a plastinated killer whale heart. The gross description of the arteries and veins reaching the organ and its coronary vessels are reported. Additional endoscopy and CT (computed tomography) scanning were performed to provide extensive measurements of its parts. In many aspects, the killer whale heart conformed to other delphinid heart descriptions, including position, relative size and shape and specific features such as extensive papillary muscles, trabecular endocardium and trabecula septomarginalis. These characteristics are representative of the delphinid family, suggesting that its functions and capacities are similar to that of other, smaller, dolphins and help understand the conditions in which these predators exert their remarkable physical performance necessary for their survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA