Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(8): 1244-1255, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414906

RESUMO

Humoral immune responses are characterized by complex mixtures of polyclonal antibody species varying in their isotype, target epitope specificity and affinity. Posttranslational modifications occurring during antibody production in both the antibody variable and constant domain create further complexity and can modulate antigen specificity and antibody Fc-dependent effector functions, respectively. Finally, modifications of the antibody backbone after secretion may further impact antibody activity. An in-depth understanding of how these posttranslational modifications impact antibody function, especially in the context of individual antibody isotypes and subclasses, is only starting to emerge. Indeed, only a minute proportion of this natural variability in the humoral immune response is currently reflected in therapeutic antibody preparations. In this Review, we summarize recent insights into how IgG subclass and posttranslational modifications impact IgG activity and discuss how these insights may be used to optimize therapeutic antibody development.


Assuntos
Imunoglobulina G , Imunoterapia , Epitopos
4.
Immunity ; 52(1): 136-150.e6, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940267

RESUMO

Effector CD8+ T cells are important mediators of adaptive immunity, and receptor-ligand interactions that regulate their survival may have therapeutic potential. Here, we identified a subset of effector CD8+ T cells that expressed the inhibitory fragment crystallizable (Fc) receptor FcγRIIB following activation and multiple rounds of division. CD8+ T cell-intrinsic genetic deletion of Fcgr2b increased CD8+ effector T cell accumulation, resulting in accelerated graft rejection and decreased tumor volume in mouse models. Immunoglobulin G (IgG) antibody was not required for FcγRIIB-mediated control of CD8+ T cell immunity, and instead, the immunosuppressive cytokine fibrinogen-like 2 (Fgl2) was a functional ligand for FcγRIIB on CD8+ T cells. Fgl2 induced caspase-3/7-mediated apoptosis in Fcgr2b+, but not Fcgr2b-/-, CD8+ T cells. Increased expression of FcγRIIB correlated with freedom from rejection following withdrawal from immunosuppression in a clinical trial of kidney transplant recipients. Together, these findings demonstrate a cell-intrinsic coinhibitory function of FcγRIIB in regulating CD8+ T cell immunity.


Assuntos
Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Fibrinogênio/imunologia , Receptores de IgG/imunologia , Adulto , Idoso , Animais , Caspase 3/imunologia , Caspase 7/imunologia , Linhagem Celular Tumoral , Feminino , Fibrinogênio/genética , Rejeição de Enxerto/imunologia , Humanos , Imunoglobulina G/imunologia , Terapia de Imunossupressão , Masculino , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptores de IgG/genética , Adulto Jovem
5.
Nature ; 614(7948): 539-547, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725933

RESUMO

Antibody responses during infection and vaccination typically undergo affinity maturation to achieve high-affinity binding for efficient neutralization of pathogens1,2. Similarly, high affinity is routinely the goal for therapeutic antibody generation. However, in contrast to naturally occurring or direct-targeting therapeutic antibodies, immunomodulatory antibodies, which are designed to modulate receptor signalling, have not been widely examined for their affinity-function relationship. Here we examine three separate immunologically important receptors spanning two receptor superfamilies: CD40, 4-1BB and PD-1. We show that low rather than high affinity delivers greater activity through increased clustering. This approach delivered higher immune cell activation, in vivo T cell expansion and antitumour activity in the case of CD40. Moreover, an inert anti-4-1BB monoclonal antibody was transformed into an agonist. Low-affinity variants of the clinically important antagonistic anti-PD-1 monoclonal antibody nivolumab also mediated more potent signalling and affected T cell activation. These findings reveal a new paradigm for augmenting agonism across diverse receptor families and shed light on the mechanism of antibody-mediated receptor signalling. Such affinity engineering offers a rational, efficient and highly tuneable solution to deliver antibody-mediated receptor activity across a range of potencies suitable for translation to the treatment of human disease.


Assuntos
Anticorpos Monoclonais , Afinidade de Anticorpos , Imunomodulação , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos CD40/efeitos dos fármacos , Antígenos CD40/imunologia , Imunomodulação/efeitos dos fármacos , Imunomodulação/imunologia , Nivolumabe/imunologia , Nivolumabe/farmacologia
6.
Immunity ; 49(5): 958-970.e7, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30446386

RESUMO

The costimulatory receptor 4-1BB is expressed on activated immune cells, including activated T cells. Antibodies targeting 4-1BB enhance the proliferation and survival of antigen-stimulated T cells in vitro and promote CD8 T cell-dependent anti-tumor immunity in pre-clinical cancer models. We found that T regulatory (Treg) cells infiltrating human or murine tumors expressed high amounts of 4-1BB. Intra-tumoral Treg cells were preferentially depleted by anti-4-1BB mAbs in vivo. Anti-4-1BB mAbs also promoted effector T cell agonism to promote tumor rejection. These distinct mechanisms were competitive and dependent on antibody isotype and FcγR availability. Administration of anti-4-1BB IgG2a, which preferentially depletes Treg cells, followed by either agonistic anti-4-1BB IgG1 or anti-PD-1 mAb augmented anti-tumor responses in multiple solid tumor models. An antibody engineered to optimize both FcγR-dependent Treg cell depleting capacity and FcγR-independent agonism delivered enhanced anti-tumor therapy. These insights into the effector mechanisms of anti-4-1BB mAbs lay the groundwork for translation into the clinic.


Assuntos
Anticorpos Monoclonais/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Imunomodulação/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Animais , Expressão Gênica , Humanos , Imunoglobulina G/farmacologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Knockout , Neoplasias/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
7.
J Immunol ; 210(11): 1837-1848, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37093649

RESUMO

The classical complement system represents a central effector mechanism of Abs initiated by the binding of C1q to target bound IgG. Human C1q contains six heterotrimeric globular head groups that mediate IgG interaction, resulting in an avidity-driven binding event involving multiple IgG molecules binding a single C1q. Accordingly, surface bound IgG molecules are thought to assemble into noncovalent hexameric rings for optimal binding to the six-headed C1q. To study the C1q-Fc interaction of various Abs and screen for altered C1q binding mutants, we developed, to our knowledge, a novel HPLC-based method. Employing a single-chain form of C1q representing one C1q head group, our HPLC methodology was able to detect the interaction between the single-chain monomeric form of C1q and various ligands. We show that, despite a narrow window of specific binding owing to the low affinity of the monomeric C1q-IgG interaction, this approach clearly distinguished between IgG subclasses with established C1q binding properties. IgG3 displayed the strongest binding, followed by IgG1, with IgG2 and IgG4 showing the weakest binding. Fc mutants known to have increased C1q binding through oligomerization or enhanced C1q interaction showed greatly increased column retention, and IgG glycovariants displayed a consistent trend of increasing retention upon increasing galactosylation and sialylation. Furthermore, the column retention of IgG isotypes and glycovariants matches both the cell surface recruitment of C1q and complement-mediated cytotoxicity induced by each variant on an anti-CD20 Ab backbone. This methodology therefore provides a valuable tool for testing IgG Ab (glyco)variants for C1q binding, with clear relevance for therapeutic Ab development.


Assuntos
Complemento C1q , Imunoglobulina G , Humanos , Complemento C1q/metabolismo , Imunoglobulina G/metabolismo , Proteínas do Sistema Complemento , Cromatografia de Afinidade
8.
Mol Ther ; 32(2): 457-468, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38053333

RESUMO

CTLA-4 is a crucial immune checkpoint receptor involved in the maintenance of immune homeostasis, tolerance, and tumor control. Antibodies targeting CTLA-4 have been promising treatments for numerous cancers, but the mechanistic basis of their anti-tumoral immune-boosting effects is poorly understood. Although the ctla4 gene also encodes an alternatively spliced soluble variant (sCTLA-4), preclinical/clinical evaluation of anti-CTLA-4-based immunotherapies have not considered the contribution of this isoform. Here, we explore the functional properties of sCTLA-4 and evaluate the efficacy of isoform-specific anti-sCTLA-4 antibody targeting in a murine cancer model. We show that expression of sCTLA-4 by tumor cells suppresses CD8+ T cells in vitro and accelerates growth and experimental metastasis of murine tumors in vivo. These effects were accompanied by modification of the immune infiltrate, notably restraining CD8+ T cells in a non-cytotoxic state. sCTLA-4 blockade with isoform-specific antibody reversed this restraint, enhancing intratumoral CD8+ T cell activation and cytolytic potential, correlating with therapeutic efficacy and tumor control. This previously unappreciated role of sCTLA-4 suggests that the biology and function of multi-gene products of immune checkpoint receptors need to be fully elucidated for improved mechanistic understanding of cancer immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Anticorpos , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/genética , Neoplasias/genética , Neoplasias/terapia , Isoformas de Proteínas/genética
9.
Clin Exp Immunol ; 217(1): 15-30, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642912

RESUMO

B and T cells collaborate to drive autoimmune disease (AID). Historically, B- and T-cell (B-T cell) co-interaction was targeted through different pathways such as alemtuzumab, abatacept, and dapirolizumab with variable impact on B-cell depletion (BCD), whereas the majority of patients with AID including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and organ transplantation benefit from targeted BCD with anti-CD20 monoclonal antibodies such as rituximab, ocrelizumab, or ofatumumab. Refractory AID is a significant problem for patients with incomplete BCD with a greater frequency of IgD-CD27+ switched memory B cells, CD19+CD20- B cells, and plasma cells that are not directly targeted by anti-CD20 antibodies, whereas most lymphoid tissue plasma cells express CD19. Furthermore, B-T-cell collaboration is predominant in lymphoid tissues and at sites of inflammation such as the joint and kidney, where BCD may be inefficient, due to limited access to key effector cells. In the treatment of cancer, chimeric antigen receptor (CAR) T-cell therapy and T-cell engagers (TCE) that recruit T cells to induce B-cell cytotoxicity have delivered promising results for anti-CD19 CAR T-cell therapies, the CD19 TCE blinatumomab and CD20 TCE such as mosunetuzumab, glofitamab, or epcoritamab. Limited evidence suggests that anti-CD19 CAR T-cell therapy may be effective in managing refractory AID whereas we await evaluation of TCE for use in non-oncological indications. Therefore, here, we discuss the potential mechanistic advantages of novel therapies that rely on T cells as effector cells to disrupt B-T-cell collaboration toward overcoming rituximab-resistant AID.


Assuntos
Doenças Autoimunes , Linfócitos B , Imunoterapia Adotiva , Linfócitos T , Humanos , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Linfócitos B/imunologia , Linfócitos T/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Rituximab/uso terapêutico , Comunicação Celular/imunologia , Animais
10.
Brain Behav Immun ; 118: 468-479, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503395

RESUMO

Chronic lymphocytic leukaemia (CLL) is characterised by the clonal proliferation and accumulation of mature B-cells and is often treated with rituximab, an anti-CD20 monoclonal antibody immunotherapy. Rituximab often fails to induce stringent disease eradication, due in part to failure of antibody-dependent cellular cytotoxicity (ADCC) which relies on natural killer (NK)-cells binding to rituximab-bound CD20 on B-cells. CLL cells are diffusely spread across lymphoid and other bodily tissues, and ADCC resistance in survival niches may be due to several factors including low NK-cell frequency and a suppressive stromal environment that promotes CLL cell survival. It is well established that exercise bouts induce a transient relocation of NK-cells and B-cells into peripheral blood, which could be harnessed to enhance the efficacy of rituximab in CLL by relocating both target and effector cells together with rituximab in blood. In this pilot study, n = 20 patients with treatment-naïve CLL completed a bout of cycling 15 % above anaerobic threshold for âˆ¼ 30-minutes, with blood samples collected pre-, immediately post-, and 1-hour post-exercise. Flow cytometry revealed that exercise evoked a 254 % increase in effector (CD3-CD56+CD16+) NK-cells in blood, and a 67 % increase in CD5+CD19+CD20+ CLL cells in blood (all p < 0.005). NK-cells were isolated from blood samples pre-, and immediately post-exercise and incubated with primary isolated CLL cells with or without the presence of rituximab to determine specific lysis using a calcein-release assay. Rituximab-mediated cell lysis increased by 129 % following exercise (p < 0.001). Direct NK-cell lysis of CLL cells - independent of rituximab - was unchanged following exercise (p = 0.25). We conclude that exercise improved the efficacy of rituximab-mediated ADCC against autologous CLL cells ex vivo and propose that exercise should be explored as a means of enhancing clinical responses in patients receiving anti-CD20 immunotherapy.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Humanos , Rituximab/farmacologia , Rituximab/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Projetos Piloto , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Monoclonais Murinos/uso terapêutico
11.
J Immunol ; 209(2): 379-390, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35768150

RESUMO

NK cells are promising cellular therapeutics against hematological and solid malignancies. Immunogenetic studies have identified that various activating killer cell Ig-like receptors (KIRs) are associated with cancer outcomes. Specifically, KIR2DS2 has been associated with reduced incidence of relapse following transplant in hematological malignancies and improved outcomes in solid tumors, but the mechanism remains obscure. Therefore, we investigated how KIR2DS2 expression impacts NK cell function. Using a novel flow cytometry panel, we show that human NK cells with high KIR2DS2 expression have enhanced spontaneous activation against malignant B cell lines, liver cancer cell lines, and primary chronic lymphocytic leukemia cells. Surface expression of CD16 was increased on KIR2DS2high NK cells, and, accordingly, KIR2DS2high NK cells had increased activation against lymphoma cells coated with the clinically relevant anti-CD20 Abs rituximab and obinutuzumab. Bulk RNA sequencing revealed that KIR2DS2high NK cells have upregulation of NK-mediated cytotoxicity, translation, and FCGR gene pathways. We developed a novel single-cell RNA-sequencing technique to identify KIR2DS2+ NK cells, and this confirmed that KIR2DS2 is associated with enhanced NK cell-mediated cytotoxicity. This study provides evidence that KIR2DS2 marks a population of NK cells primed for anticancer activity and indicates that KIR2DS2 is an attractive target for NK-based therapeutic strategies.


Assuntos
Células Matadoras Naturais , Receptores KIR , Antígenos CD20/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Células Matadoras Naturais/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo , Rituximab/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico
12.
Semin Cancer Biol ; 81: 119-131, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33340646

RESUMO

The fundamental understanding of how Cancer initiates, persists and then progresses is evolving. High-resolution technologies, including single-cell mutation and gene expression measurements, are now attainable, providing an ever-increasing insight into the molecular details. However, this higher resolution has shown that somatic mutation theory itself cannot explain the extraordinary resistance of cancer to extinction. There is a need for a more Systems-based framework of understanding cancer complexity, which in particular explains the regulation of gene expression during cell-fate decisions. Cancer displays a series of paradoxes. Here we attempt to approach them from the view-point of adaptive exploration of gene regulatory networks at the edge of order and chaos, where cell-fate is changed by oscillations between alternative regulators of cellular senescence and reprogramming operating through self-organisation. On this background, the role of polyploidy in accessing the phylogenetically pre-programmed "oncofetal attractor" state, related to unicellularity, and the de-selection of unsuitable variants at the brink of cell survival is highlighted. The concepts of the embryological and atavistic theory of cancer, cancer cell "life-cycle", and cancer aneuploidy paradox are dissected under this lense. Finally, we challenge researchers to consider that cancer "defects" are mostly the adaptation tools of survival programs that have arisen during evolution and are intrinsic of cancer. Recognition of these features should help in the development of more successful anti-cancer treatments.


Assuntos
Neoplasias , Poliploidia , Aneuploidia , Senescência Celular/genética , Redes Reguladoras de Genes , Humanos , Neoplasias/genética
13.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834014

RESUMO

Cancer is globally increasing [...].


Assuntos
Genoma , Neoplasias , Humanos , Neoplasias/genética
14.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834647

RESUMO

In our recent work, we observed that triple-negative breast cancer MDA-MB-231 cells respond to doxorubicin (DOX) via "mitotic slippage" (MS), discarding cytosolic damaged DNA during the process that provides their resistance to this genotoxic treatment. We also noted two populations of polyploid giant cells: those budding surviving offspring, versus those reaching huge ploidy by repeated MS and persisting for several weeks. Their separate roles in the recovery from treatment remained unclear. The current study was devoted to characterising the origin and relationship of these two sub-populations in the context of MS. MS was hallmarked by the emergence of nuclear YAP1/OCT4A/MOS/EMI2-positivity featuring a soma-germ transition to the meiotic-metaphase-arrested "maternal germ cell". In silico, the link between modules identified in the inflammatory innate immune response to cytosolic DNA and the reproductive module of female pregnancy (upregulating placenta developmental genes) was observed in polyploid giant cells. Asymmetry of the two subnuclei types, one repairing DNA and releasing buds enriched by CDC42/ACTIN/TUBULIN and the other persisting and degrading DNA in a polyploid giant cell, was revealed. We propose that when arrested in MS, a "maternal cancer germ cell" may be parthenogenetically stimulated by the placental proto-oncogene parathyroid-hormone-like-hormone, increasing calcium, thus creating a "female pregnancy-like" system within a single polyploid giant cancer cell.


Assuntos
Neoplasias , Placenta , Feminino , Gravidez , Humanos , Células Gigantes , Poliploidia , DNA , Hormônios
15.
Eur J Immunol ; 51(3): 682-693, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33244759

RESUMO

A haplotype with tightly linked Fc gamma receptor (FcγR) genes is known as a major locus controlling immune responses and autoimmune diseases, including arthritis. Here, we split a congenic fragment derived from the NOD mouse (Cia9) to study its effect on immune response and arthritis in mice. We found that arthritis susceptibility was indeed controlled by the FcγR gene cluster and a recombination between the FcγR2b and FcγR3 loci gave us the opportunity to separately study their impact. We identified the NOD-derived FcγR2b and FcγR3 alleles as disease-promoting for arthritis development without impact on antibody secretion. We further found that macrophage-mediated phagocytosis was directly correlated to FcγR3 expression in the congenic mice. In conclusion, we positioned FcγR2b and FcγR3 alleles as disease regulatory and showed that their genetic polymorphisms independently and additively control innate immune cell activation and arthritis.


Assuntos
Artrite Experimental/genética , Predisposição Genética para Doença/genética , Haplótipos/genética , Polimorfismo Genético/genética , Receptores de IgG/genética , Alelos , Animais , Doenças Autoimunes/genética , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout
16.
Rheumatology (Oxford) ; 61(7): 2894-2904, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34788412

RESUMO

OBJECTIVES: To investigate key factors that may contribute to the variability of rituximab-mediated peripheral and renal B cell depletion (BCD) in SLE. METHODS: We analysed: (i) CD19+ B cell counts in patients with SLE before and 1, 2, 3 and 6 months after treatment with rituximab, comparing them with RA patients; (ii) the presence of B cells in renal biopsies after rituximab therapy; (iii) whether the duration of BCD correlated with patient demographics and B cell expression of CD20 and FcγRIIb; and (iv) the effect of B cell activation factor (BAFF) on the efficiency of rituximab and obinutuzumab at inducing BCD in whole blood assays, in vitro. RESULTS: In SLE (n = 71), the duration of BCD was shorter compared with RA (n = 27). B cells were detectable in renal biopsy samples (n = 6) after treatment with rituximab in all patients with poor response while peripheral blood B cells remained low or undetectable in the same patients. There were no significant relationships between peripheral BCD and patient age, disease duration, serum C3 levels or the level of expression of B cell surface proteins CD20 and FcγRIIb. Obinutuzumab was more efficient than rituximab at inducing BCD in whole blood assays, regardless of excess BAFF. CONCLUSIONS: BCD in SLE is less efficient than in RA. Renal B cell presence following rituximab treatment was associated with poor outcomes. No significant relationships between any measured B cell related, clinical or laboratory parameters and the efficiency of BCD by rituximab was found. Obinutuzumab was superior to rituximab at inducing BCD.


Assuntos
Lúpus Eritematoso Sistêmico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD20 , Linfócitos B , Humanos , Rituximab/farmacologia , Rituximab/uso terapêutico
18.
Biologicals ; 69: 1-14, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33288390

RESUMO

Systemic Lupus Erythematosus (SLE) is an autoimmune inflammatory condition with a wide spectrum of disease manifestations and severities, resulting in significant morbidity and mortality. The aetiopathogenesis of SLE is complex. Young women and certain ethnicities are commonly affected, suggesting a significant hormonal and genetic influence. Diverse immunological abnormalities have been described. A characteristic abnormality is the presence of autoantibodies, implicating a central role for B cells in disease pathogenesis and/or perpetuation. Whilst conventional therapies have improved outcomes, a great unmet need remains. Recently, biological therapies are being explored. B-cell depletion therapy with rituximab has been in use off-label for nearly two decades. Inconsistent results between uncontrolled and controlled studies have raised doubts about its efficacy. In this review, we will focus on B cell abnormalities and the rationale behind B-cell depletion therapy with anti-CD20 monoclonal antibody (mAb), rituximab, will be explored including an evaluation of clinical and trial experience. Finally, we will discuss the mechanistic basis for considering alternative anti-CD20 mAbs.


Assuntos
Anticorpos Monoclonais , Lúpus Eritematoso Sistêmico , Rituximab , Anticorpos Monoclonais/uso terapêutico , Antígenos CD20 , Linfócitos B , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Rituximab/uso terapêutico
19.
J Allergy Clin Immunol ; 145(4): 1240-1253.e3, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31866435

RESUMO

BACKGROUND: Peanut allergy is a severe and increasingly frequent disease with high medical, psychosocial, and economic burden for affected patients and wider society. A causal, safe, and effective therapy is not yet available. OBJECTIVE: We sought to develop an immunogenic, protective, and nonreactogenic vaccine candidate against peanut allergy based on virus-like particles (VLPs) coupled to single peanut allergens. METHODS: To generate vaccine candidates, extracts of roasted peanut (Ara R) or the single allergens Ara h 1 or Ara h 2 were coupled to immunologically optimized Cucumber Mosaic Virus-derived VLPs (CuMVtt). BALB/c mice were sensitized intraperitoneally with peanut extract absorbed to alum. Immunotherapy consisted of a single subcutaneous injection of CuMVtt coupled to Ara R, Ara h 1, or Ara h 2. RESULTS: The vaccines CuMVtt-Ara R, CuMVtt-Ara h 1, and CuMVtt-Ara h 2 protected peanut-sensitized mice against anaphylaxis after intravenous challenge with the whole peanut extract. Vaccines did not cause allergic reactions in sensitized mice. CuMVtt-Ara h 1 was able to induce specific IgG antibodies, diminished local reactions after skin prick tests, and reduced the infiltration of the gastrointestinal tract by eosinophils and mast cells after oral challenge with peanut. The ability of CuMVtt-Ara h 1 to protect against challenge with the whole extract was mediated by IgG, as shown via passive IgG transfer. FcγRIIb was required for protection, indicating that immune complexes with single allergens were able to block the allergic response against the whole extract, consisting of a complex allergen mixture. CONCLUSIONS: Our data suggest that vaccination using single peanut allergens displayed on CuMVtt may represent a novel therapy against peanut allergy with a favorable safety profile.


Assuntos
Antígenos de Plantas/genética , Dessensibilização Imunológica/métodos , Proteínas de Membrana/genética , Hipersensibilidade a Amendoim/terapia , Proteínas de Plantas/genética , Vacinas/genética , Vírion/genética , Animais , Antígenos de Plantas/imunologia , Arachis/genética , Cucumovirus/genética , Engenharia Genética , Humanos , Epitopos Imunodominantes/imunologia , Imunoglobulina E/metabolismo , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Plantas/imunologia , Receptores de IgG/metabolismo , Vacinas/imunologia , Vírion/imunologia
20.
J Autoimmun ; 113: 102501, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32586651

RESUMO

V-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA) is a negative checkpoint regulator of T cells. We assessed VISTA deficient mice in the murine nephrotoxic nephritis models of acute and chronic immune-complex mediated glomerulonephritis. We show that VISTA deficiency protects from crescentic glomerulonephritis, with no effect on the nephritogenic adaptive immune response. The early neutrophil influx was unaffected but proteinuria was reduced suggesting a reduction in neutrophil activation. In vivo, there was reduced neutrophil degranulation in VISTA deficienct mice and, in vitro, VISTA-deficient neutrophils had an impaired response to immune complexes but not to fMLP or PMA. Mice with a genetic deficiency of neutrophils due to myeloid-specific deletion of myeloid cell leukemia 1 (Mcl-1) were also protected from crescentic glomerulonephritis, indicating an essential role for neutrophils. Therefore, VISTA deficiency inhibits neutrophil activation by immune complexes and neutrophil-dependent crescentic glomerulonephritis. This suggests that VISTA is a therapeutic target for inflammatory disease. However, this would need to be balanced against a potential enhancing effect on autoimmunity.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Glomerulonefrite/imunologia , Glomérulos Renais/patologia , Proteínas de Membrana/deficiência , Neutrófilos/imunologia , Animais , Modelos Animais de Doenças , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/imunologia , Glomerulonefrite/sangue , Glomerulonefrite/patologia , Humanos , Glomérulos Renais/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/deficiência , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Ativação de Neutrófilo , Neutrófilos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA