Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(17): 176402, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412257

RESUMO

Landau-level spectroscopy, the optical analysis of electrons in materials subject to a strong magnetic field, is a versatile probe of the electronic band structure and has been successfully used in the identification of novel states of matter such as Dirac electrons, topological materials or Weyl semimetals. The latter arise from a complex interplay between crystal symmetry, spin-orbit interaction, and inverse ordering of electronic bands. Here, we report on unusual Landau-level transitions in the monopnictide TaP that decrease in energy with increasing magnetic field. We show that these transitions arise naturally at intermediate energies in time-reversal-invariant Weyl semimetals where the Weyl nodes are formed by a partially gapped nodal-loop in the band structure. We propose a simple theoretical model for electronic bands in these Weyl materials that captures the collected magneto-optical data to great extent.

2.
Phys Rev Lett ; 122(21): 217402, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283333

RESUMO

Zirconium pentatelluride was recently reported to be a 3D Dirac semimetal, with a single conical band, located at the center of the Brillouin zone. The cone's lack of protection by the lattice symmetry immediately sparked vast discussions about the size and topological or trivial nature of a possible gap opening. Here, we report on a combined optical and transport study of ZrTe_{5}, which reveals an alternative view of electronic bands in this material. We conclude that the dispersion is approximately linear only in the a-c plane, while remaining relatively flat and parabolic in the third direction (along the b axis). Therefore, the electronic states in ZrTe_{5} cannot be described using the model of 3D Dirac massless electrons, even when staying at energies well above the band gap 2Δ=6 meV found in our experiments at low temperatures.

3.
Phys Rev Lett ; 117(13): 136401, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715109

RESUMO

We report on optical reflectivity experiments performed on Cd_{3}As_{2} over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorption in the quantum limit implies that we are probing massless Kane electrons rather than symmetry-protected 3D Dirac particles. The latter may appear at a smaller energy scale and are not directly observed in our infrared experiments.

4.
Nano Lett ; 12(5): 2470-4, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22519967

RESUMO

We show that in graphene epitaxially grown on SiC the Drude absorption is transformed into a strong terahertz plasmonic peak due to natural nanoscale inhomogeneities, such as substrate terraces and wrinkles. The excitation of the plasmon modifies dramatically the magneto-optical response and in particular the Faraday rotation. This makes graphene a unique playground for plasmon-controlled magneto-optical phenomena thanks to a cyclotron mass 2 orders of magnitude smaller than in conventional plasmonic materials such as noble metals.

5.
Phys Rev Lett ; 106(21): 217601, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21699342

RESUMO

We show an example of a purely magnetic spin resonance in EuTiO(3) and the resulting new record high Faraday rotation of 590°/mm at 1.6 T for 1 cm wavelengths probed by a novel technique of magneto-optical gigahertz time-domain ellipsometry. From our transmission measurements of linear polarized light, we map out the complex index of refraction n=√ϵµ in the gigahertz to terahertz range. We observe a strong resonant absorption by magnetic dipole transitions involving the Zeeman split S=7/2 magnetic energy levels of the Eu(2+) ions, which causes a very large dichroism for circular polarized radiation.

6.
Struct Dyn ; 4(6): 061505, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29308417

RESUMO

In the present review, laser fields are so strong that they become part of the electronic potential, and sometimes even dominate the Coulomb contribution. This manipulation of atomic potentials and of the associated states and bands finds fascinating applications in gases and solids, both in the bulk and at the surface. We present some recent spectacular examples obtained within the NCCR MUST in Switzerland.

7.
Phys Rev Lett ; 103(11): 116804, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19792392

RESUMO

We observe a giant increase of the infrared intensity and a softening of the in-plane antisymmetric phonon mode E(u) ( approximately 0.2 eV) in bilayer graphene as a function of the gate-induced doping. The phonon peak has a pronounced Fano-like asymmetry. We suggest that the intensity growth and the softening originate from the coupling of the phonon mode to the narrow electronic transition between parallel bands of the same character, while the asymmetry is due to the interaction with the continuum of transitions between the lowest hole and electron bands. The growth of the peak can be interpreted as a "charged-phonon" effect observed previously in organic chain conductors and doped fullerenes, which can be tuned in graphene with the gate voltage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA