Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 34(10): 1128-1142, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34260261

RESUMO

The fungal family Serendipitaceae encompasses root-associated lineages with endophytic, ericoid, orchid, and ectomycorrhizal lifestyles. Switchgrass is an important bioenergy crop for cellulosic ethanol production owing to high biomass production on marginal soils otherwise unfit for food crop cultivation. The aim of this study was to investigate the host plant responses to Serendipita spp. colonization by characterizing the switchgrass root transcriptome during different stages of symbiosis in vitro. For this, we included a native switchgrass strain, Serendipita bescii, and a related strain, S. vermifera, isolated from Australian orchids. Serendipita colonization progresses from thin hyphae that grow between root cells to, finally, the production of large, bulbous hyphae that fill root cells during the later stages of colonization. We report that switchgrass seems to perceive both fungi prior to physical contact, leading to the activation of chemical and structural defense responses and putative host disease resistance genes. Subsequently, the host defense system appears to be quenched and carbohydrate metabolism adjusted, potentially to accommodate the fungal symbiont. In addition, prior to contact, switchgrass exhibited significant increases in root hair density and root surface area. Furthermore, genes involved in phytohormone metabolism such as gibberellin, jasmonic acid, and salicylic acid were activated during different stages of colonization. Both fungal strains induced plant gene expression in a similar manner, indicating a conserved plant response to members of this fungal order. Understanding plant responsiveness to Serendipita spp. will inform our efforts to integrate them into forages and row crops for optimal plant-microbe functioning, thus facilitating low-input, sustainable agricultural practices.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota , Micorrizas , Panicum , Austrália , Basidiomycota/genética , Fungos , Micorrizas/genética , Panicum/genética , Raízes de Plantas/genética , Simbiose , Transcriptoma/genética
2.
Environ Microbiol ; 23(4): 1876-1888, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32959463

RESUMO

Serendipita vermifera ssp. bescii, hereafter referred to as S. bescii, is a root-associated fungus that promotes plant growth in both its native switchgrass host and a variety of monocots and dicots. Winter wheat (Triticum aestivum L.), a dual-purpose crop, used for both forage and grain production, significantly contributes to the agricultural economies of the Southern Great Plains, USA. In this study, we investigated the influence of S. bescii on growth and transcriptome regulation of nitrogen (N) and phosphorus (P) metabolism in winter wheat. Serendipita bescii significantly improved lateral root growth and forage biomass under a limited N or P regime. Further, S. bescii activated sets of host genes regulating N and P starvation responses. These genes include, root-specific auxin transport, strigolactone and gibberellin biosynthesis, degradation of phospholipids and biosynthesis of glycerolipid, downregulation of ammonium transport and nitrate assimilation, restriction of protein degradation by autophagy and subsequent N remobilization. All these genes are hypothesized to regulate acquisition, assimilation and remobilization of N and P. Based on transcriptional level gene regulation and physiological responses to N or P limitation, we suggest S. bescii plays a critical role in modulating stress imposed by limitation of these two critical nutrients in winter wheat.


Assuntos
Nitrogênio , Triticum , Basidiomycota , Fósforo , Transcriptoma/genética , Triticum/genética
3.
BMC Pulm Med ; 20(1): 298, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198722

RESUMO

BACKGROUND: Cholangiocarcinoma is a rare gastrointestinal malignancy that arises within the intrahepatic, perihilar, and/or extrahepatic bile ducts. Individuals with cystic fibrosis are at increased risk for gastrointestinal malignancies. The most common gastrointestinal malignancy in cystic fibrosis is colon cancer, but other gastrointestinal malignancies also occur at greater rates than the general population. CASE PRESENTATION: We present a case of a rapidly progressive metastatic intrahepatic cholangiocarcinoma in an individual with cystic fibrosis who was 5 months postpartum, incidentally found while undergoing a lung transplantation evaluation. CONCLUSION: A heightened clinical awareness of gastrointestinal malignancies, beyond colon cancer, in individuals with cystic fibrosis is warranted. It remains unclear if pregnancy is an additional risk factor for gastrointestinal malignancies in cystic fibrosis.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Fibrose Cística/complicações , Adulto , Evolução Fatal , Feminino , Humanos , Achados Incidentais , Metástase Neoplásica , Período Pós-Parto
4.
World J Microbiol Biotechnol ; 32(1): 16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26715121

RESUMO

The Sebacinales belong to a taxonomically, ecologically, and physiologically diverse group of fungi in the Basidiomycota. While historically recognized as orchid mycorrhizae, recent DNA studies have brought to light both their pandemic distribution and the broad spectrum of mycorrhizal types they form. Indeed, ecological studies using molecular-based methods of detection have found Sebacinales fungi in field specimens of bryophytes (moss), pteridophytes (fern) and all families of herbaceous angiosperms (flowering plants) from temperate, subtropical and tropical regions. These natural host plants include, among others, liverworts, wheat, maize and Arabidopsis thaliana, the model plant traditionally viewed as non-mycorrhizal. The orchid mycorrhizal fungus Sebacina vermifera (MAFF 305830) was first isolated from the Australian orchid Cyrtostylis reniformis. Research performed with this strain clearly indicates its plant growth promoting abilities in a variety of plants, while demonstrating a lack of specificity that rivals or even surpasses that of arbuscular mycorrhizae. Indeed, these traits thus far appear to characterize a majority of strains belonging to the so-called "clade B" within the Sebacinales (recently re-classified as the Serendipitaceae), raising numerous basic research questions regarding plant-microbe signaling and the evolution of mycorrhizal symbioses. Further, given their proven beneficial impact on plant growth and their apparent but cryptic ubiquity, sebacinoid fungi should be considered as a previously hidden, but amenable and effective microbial tool for enhancing plant productivity and stress tolerance.


Assuntos
Basidiomycota/fisiologia , Produtos Agrícolas/microbiologia , Raízes de Plantas/microbiologia , Simbiose , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Hepatófitas/microbiologia , Micorrizas/fisiologia , Orchidaceae/microbiologia , Filogenia , Brotos de Planta/microbiologia , Triticum/microbiologia
5.
Appl Environ Microbiol ; 80(18): 5636-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25002418

RESUMO

Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America that is being developed as a feedstock for cellulosic ethanol production. Industrial nitrogen fertilizers enhance switchgrass biomass production but add to production and environmental costs. A potential sustainable alternative source of nitrogen is biological nitrogen fixation. As a step in this direction, we studied the diversity of nitrogen-fixing bacteria (NFB) associated with native switchgrass plants from the tallgrass prairie of northern Oklahoma (United States), using a culture-independent approach. DNA sequences from the nitrogenase structural gene, nifH, revealed over 20 putative diazotrophs from the alpha-, beta-, delta-, and gammaproteobacteria and the firmicutes associated with roots and shoots of switchgrass. Alphaproteobacteria, especially rhizobia, predominated. Sequences derived from nifH RNA indicated expression of this gene in several bacteria of the alpha-, beta-, delta-, and gammaproteobacterial groups associated with roots. Prominent among these were Rhizobium and Methylobacterium species of the alphaproteobacteria, Burkholderia and Azoarcus species of the betaproteobacteria, and Desulfuromonas and Geobacter species of the deltaproteobacteria.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Fixação de Nitrogênio , Panicum/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Pradaria , Dados de Sequência Molecular , Oklahoma , Oxirredutases/genética , Análise de Sequência de DNA
6.
Eukaryot Cell ; 11(12): 1463-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042130

RESUMO

Hyphal anastomosis, or vegetative hyphal fusion, establishes the interconnection of individual hyphal strands into an integrated network of a fungal mycelium. In contrast to recent advances in the understanding of the molecular basis for hyphal anastomosis, knowledge of the physiological role of hyphal anastomosis in the natural habitats of filamentous fungi is still very limited. To investigate the role of hyphal anastomosis in fungal endophyte-plant interactions, we generated mutant strains lacking the Epichloë festucae soft (so) gene, an ortholog of the hyphal anastomosis gene so in the endophytic fungus E. festucae. The E. festucae Δso mutant strains grew similarly to the wild-type strain in culture but with reduced aerial hyphae and completely lacked hyphal anastomosis. The most striking phenotype of the E. festucae Δso mutant strain was that it failed to establish a mutualistic symbiosis with the tall fescue plant host (Lolium arundinaceum); instead, it killed the host plant within 2 months after the initial infection. Microscopic examination revealed that the death of the tall fescue plant host was associated with the distortion and disorganization of plant cells. This study suggests that hyphal anastomosis may have an important role in the establishment/maintenance of fungal endophyte-host plant mutualistic symbiosis.


Assuntos
Endófitos/genética , Deleção de Genes , Genes Fúngicos/genética , Hypocreales/genética , Lolium/microbiologia , Simbiose/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/toxicidade , Hifas/citologia , Hypocreales/citologia , Hypocreales/metabolismo , Hypocreales/patogenicidade , Lolium/citologia , Fenótipo
7.
Clin Lab Med ; 43(4): 565-576, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37865503

RESUMO

Premalignant clonal hematopoiesis is the presence of somatic alterations in the blood of otherwise healthy individuals. Although the condition is not considered as a cancer, it carries an increased risk of developing a hematologic malignancy, particularly in those with large neoplastic clones, multiple pathogenic mutations, and high-risk mutations. In addition to the increased risk of malignancy, clonal hematopoiesis carries a markedly increased risk of cardiovascular events and death. Appropriate identification of this entity is critical to mitigate cardiovascular risk factors and ensure appropriate monitoring for the emergence of blood cancer.


Assuntos
Hematopoiese Clonal , Neoplasias Hematológicas , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Neoplasias Hematológicas/genética , Mutação , Células Clonais
8.
Ecology ; 93(3): 565-74, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22624211

RESUMO

One of the challenges to quantifying the costs and benefits of symbiosis is that symbionts can influence different components of host fitness. To improve understanding of the ecology of inherited symbionts, we developed general theory for a perennial host-hereditary symbiont interaction, in which symbionts can have independent and potentially opposing effects on host regeneration and survival. The model showed that negative effects on one component of fitness may be outweighed by positive effects on another, leading to a net positive impact of symbiosis on population growth. Model predictions depended on the availability of suitable patches, which influenced the relative contributions of survival vs. regeneration to host fitness. We then used experimental symbiont removal to quantify effects of a hereditary, fungal endophyte on a grass host. Endophyte presence strongly reduced host survival but increased regeneration. Application of the model revealed that negative effects on plant survival were overwhelmed by beneficial effects on regeneration, resulting in stable endophyte persistence at 100% frequency, consistent with field observations. Our work demonstrates the utility of a demographic perspective for predicting the dynamics of symbioses and supports the hypothesis that symbionts function as mutualists when host and symbiont fitness are coupled through vertical transmission.


Assuntos
Endófitos/fisiologia , Neotyphodium/fisiologia , Poaceae/microbiologia , Poaceae/fisiologia , Simbiose/fisiologia , Crescimento Demográfico
9.
Eukaryot Cell ; 10(2): 174-86, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21183690

RESUMO

Aspergillus fumigatus is the predominant mold pathogen in immunocompromised patients. In this study, we present the first characterization of the small GTPase RacA in A. fumigatus. To gain insight into the function of racA in the growth and pathogenesis of A. fumigatus, we constructed a strain that lacks a functional racA gene. The ΔracA strain showed significant morphological defects, including a reduced growth rate and abnormal conidiogenesis on glucose minimal medium. In the ΔracA strain, apical dominance in the leading hyphae is lost and, instead, multiple axes of polarity emerge. Intriguingly, superoxide production at the hyphal tips was reduced by 25% in the ΔracA strain. Treatment of wild-type hyphae with diphenylene iodonium, an inhibitor of NADPH oxidase, resulted in phenotypes similar to that of the ΔracA strain. These data suggest that ΔracA strain phenotypes may be due to a reduction or alteration in the production of reactive oxygen species. Most surprisingly, despite these developmental and growth abnormalities, the ΔracA strain retained at least wild-type virulence in both an insect model and two immunologically distinct murine models of invasive pulmonary aspergillosis. These results demonstrate that in vitro growth phenotypes do not always correlate with in vivo virulence and raise intriguing questions about the role of RacA in Aspergillus virulence.


Assuntos
Aspergillus fumigatus/fisiologia , Aspergillus fumigatus/patogenicidade , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Aspergillus fumigatus/crescimento & desenvolvimento , Feminino , Deleção de Genes , Humanos , Hifas/crescimento & desenvolvimento , Aspergilose Pulmonar Invasiva/microbiologia , Aspergilose Pulmonar Invasiva/patologia , Estimativa de Kaplan-Meier , Masculino , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , NADPH Oxidases/antagonistas & inibidores , Oniocompostos/farmacologia , Esporos Fúngicos/crescimento & desenvolvimento , Virulência
10.
Mycologia ; 104(5): 1187-99, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675049

RESUMO

Many Epichloë endophytes found in cool-season grasses are interspecific hybrids possessing much or all of the genomes of two or three progenitors. Here we characterize Epichloë canadensis sp. nov., a hybrid species inhabiting the grass species Elymus canadensis native to North America. Three distinct morphotypes were identified that were separated into two groups by molecular phylogenetic analysis. Sequence analysis of the translation elongation factor 1-α (tefA) and ß-tubulin (tubB) genes revealed two copies in all isolates examined. Phylogenetic analyses indicated that allele 1 of each gene was derived from Epichloë amarillans and allele 2 from Epichloë elymi. This is the first documentation of an interspecific hybrid endophyte derived from parents of strictly North American origins. Alkaloid gene profiling using primers specific to genes in the peramine, loline, indole-diterpene and ergot alkaloid pathways may indicate chemotypic variation in the ergot alkaloid and loline pathways between the assigned morphotypes. All isolates have the gene enabling the production of peramine but lack genes in the indole-diterpene biosynthesis pathway. Morphology and phylogenetic evidence support the designation of isolates from El. canadensis as a new interspecific hybrid species.


Assuntos
Elymus/microbiologia , Endófitos/classificação , Epichloe/classificação , Alcaloides/genética , Canadá , DNA de Plantas/genética , Endófitos/genética , Endófitos/ultraestrutura , Epichloe/genética , Epichloe/ultraestrutura , Alcaloides de Claviceps/genética , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Poaceae/genética , Poaceae/microbiologia , Tubulina (Proteína)/genética
11.
J Mol Diagn ; 24(12): 1217-1231, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162758

RESUMO

Detection of insertions and deletions (InDels) by short-read next-generation sequencing (NGS) technology can be challenging because of frequent misaligned reads. A systematic analysis of short InDels (1 to 30 bases) and fms-related receptor tyrosine kinase 3 (FLT3) internal tandem duplications (ITDs; 6 to 183 bases) from 46 clinical cases of solid or hematologic malignancy processed with a clinical NGS assay identified misaligned reads in every case, ranging from 3% to 100% of reads with the InDel showing mismapped bases. Mismaps also increased with InDel size. As a consequence, the clinical NGS bioinformatics pipeline undercalled the variant allele frequency by 1% to 84%, incorrectly called simultaneous single-base substitutions along with InDels, or did not report an FLT3 ITD that had been detected by capillary electrophoresis. To improve the ability of the pipeline to better detect and quantify InDels, we utilized a software program called Assembly-Based ReAligner (ABRA2) to more accurately remap reads. ABRA2 was able to correct 41% to 100% of the reads with mismapped bases and led to absolute increases in the variant allele frequency from 1% to 61% along with correction of all of the single-base substitutions except for two cases. ABRA2 could also detect multiple FLT3 ITD clones except for one 183-base ITD. Our analysis has found that ABRA2 performs well on short InDels as well as FLT3 ITDs that are <100 bases.


Assuntos
Mutação INDEL , Leucemia Mieloide Aguda , Humanos , Biologia Computacional/métodos , Tirosina Quinase 3 Semelhante a fms/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia Mieloide Aguda/genética , Software
12.
Commun Biol ; 5(1): 227, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277578

RESUMO

The perennial native switchgrass adapts better than other plant species do to marginal soils with low plant-available nutrients, including those with low phosphorus (P) content. Switchgrass roots and their associated microorganisms can alter the pools of available P throughout the whole soil profile making predictions of P availability in situ challenging. Plant P homeostasis makes monitoring of P limitation via measurements of plant P content alone difficult to interpret. To address these challenges, we developed a machine-learning model trained with high accuracy using the leaf tissue chemical profile, rather than P content. By applying this learned model in field trials across two sites with contrasting extractable soil P, we observed that actual plant available P in soil was more similar than expected, suggesting that adaptations occurred to alleviate the apparent P constraint. These adaptations come at a metabolic cost to the plant that have consequences for feedstock chemical components and quality. We observed that other biochemical signatures of P limitation, such as decreased cellulose-to-lignin ratios, were apparent, indicating re-allocation of carbon resources may have contributed to increased P acquisition. Plant P allocation strategies also differed across sites, and these differences were correlated with the subsequent year's biomass yields.


Assuntos
Panicum , Fósforo , Nitrogênio/metabolismo , Nutrientes , Panicum/metabolismo , Fósforo/análise , Solo/química
13.
ISME J ; 16(12): 2752-2762, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36085516

RESUMO

Drought disrupts soil microbial activity and many biogeochemical processes. Although plant-associated fungi can support plant performance and nutrient cycling during drought, their effects on nearby drought-exposed soil microbial communities are not well resolved. We used H218O quantitative stable isotope probing (qSIP) and 16S rRNA gene profiling to investigate bacterial community dynamics following water limitation in the hyphospheres of two distinct fungal lineages (Rhizophagus irregularis and Serendipita bescii) grown with the bioenergy model grass Panicum hallii. In uninoculated soil, a history of water limitation resulted in significantly lower bacterial growth potential and growth efficiency, as well as lower diversity in the actively growing bacterial community. In contrast, both fungal lineages had a protective effect on hyphosphere bacterial communities exposed to water limitation: bacterial growth potential, growth efficiency, and the diversity of the actively growing bacterial community were not suppressed by a history of water limitation in soils inoculated with either fungus. Despite their similar effects at the community level, the two fungal lineages did elicit different taxon-specific responses, and bacterial growth potential was greater in R. irregularis compared to S. bescii-inoculated soils. Several of the bacterial taxa that responded positively to fungal inocula belong to lineages that are considered drought susceptible. Overall, H218O qSIP highlighted treatment effects on bacterial community structure that were less pronounced using traditional 16S rRNA gene profiling. Together, these results indicate that fungal-bacterial synergies may support bacterial resilience to moisture limitation.


Assuntos
Microbiologia do Solo , Água , RNA Ribossômico 16S/genética , Água/análise , Fungos , Bactérias , Solo/química
14.
ISME J ; 16(1): 10-25, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211103

RESUMO

Switchgrass is a deep-rooted perennial native to the US prairies and an attractive feedstock for bioenergy production; when cultivated on marginal soils it can provide a potential mechanism to sequester and accumulate soil carbon (C). However, the impacts of switchgrass establishment on soil biotic/abiotic properties are poorly understood. Additionally, few studies have reported the effects of switchgrass cultivation on marginal lands that have low soil nutrient quality (N/P) or in areas that have experienced high rates of soil erosion. Here, we report a comparative analyses of soil greenhouse gases (GHG), soil chemistry, and microbial communities in two contrasting soil types (with or without switchgrass) over 17 months (1428 soil samples). These soils are highly eroded, 'Dust Bowl' remnant field sites in southern Oklahoma, USA. Our results revealed that soil C significantly increased at the sandy-loam (SL) site, but not at the clay-loam (CL) site. Significantly higher CO2 flux was observed from the CL switchgrass site, along with reduced microbial diversity (both alpha and beta). Strikingly, methane (CH4) consumption was significantly reduced by an estimated 39 and 47% at the SL and CL switchgrass sites, respectively. Together, our results suggest that soil C stocks and GHG fluxes are distinctly different at highly degraded sites when switchgrass has been cultivated, implying that carbon balance considerations should be accounted for to fully evaluate the sustainability of deep-rooted perennial grass cultivation in marginal lands.


Assuntos
Panicum , Solo , Carbono , Dióxido de Carbono/análise , Metano , Óxido Nitroso/análise , Solo/química
15.
Appl Environ Microbiol ; 77(19): 7063-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21841032

RESUMO

Experiments were conducted to examine the effects of cocultivating the important bioenergy crop switchgrass with the ectomycorrhizal fungus Sebacina vermifera under severe drought conditions. Plants cocultivated with the fungus produced significantly higher biomass and had a higher macronutrient content than uninoculated control plants under both adequately watered and drought conditions.


Assuntos
Basidiomycota/fisiologia , Biomassa , Secas , Micorrizas/fisiologia , Panicum/crescimento & desenvolvimento , Panicum/microbiologia , Simbiose , Basidiomycota/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento
16.
Mycologia ; 103(1): 75-84, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20943524

RESUMO

Members of genus Neotyphodium are asexual derivatives of sexual Epichloë species and maintain endophytic relationships with many cool-season grasses. Most Neotyphodium species analyzed so far are interspecific hybrids with combined or partial genomes of two or three ancestral species. In this study we characterized Neotyphodium isolates from Cinna arundinacea, a perennial cool-season grass from eastern North America. A total of 23 isolates grouping into two distinct morphotypes were obtained from five local populations of C. arundinacea. PCR amplification and cloning of translation-elongation factor 1-α (tefA) and ß-tubulin (tubB) genes of 10 isolates comprising both morphotypes (two isolates per location) revealed that all 10 contain two copies of tefA and tubB genes. Surprisingly phylogenetic analysis of mainly non-coding sequence from these genes revealed that both copies in each isolate were inherited from Epichloë typhina ancestors, indicating that the C. arundinacea endophytes arose through intraspecific hybridization between two E. typhina progenitors with extant relatives infecting hosts Poa nemoralis and Poa pratensis. Furthermore the tefA sequences were identical between isolates, as were tubB sequences, despite obvious morphological differences. Profiling of alkaloid biosynthetic genes from these isolates indicated the presence of the peramine biosynthetic gene (perA) and the absence of genes required for biosynthesis of lolines, indole-diterpenes and ergot alkaloids. Thus this endophyte is potentially capable of producing peramine in planta and providing protection to its host from insect pests. The absence of genes for indole-diterpenes and ergot alkaloid biosynthesis makes this endophyte a candidate for agricultural applications. Based on our phylogenetic analysis, alkaloid profiling and description of morphological characteristics, we propose the name Neotyphodium schardlii for these isolates from C. arundinacea, a new member of genus Neotyphodium and the first described to have arisen through intraspecific hybridization.


Assuntos
Neotyphodium/isolamento & purificação , Poaceae/microbiologia , Sequência de Bases , DNA Fúngico/química , DNA Fúngico/genética , Hibridização Genética , Indiana , Dados de Sequência Molecular , Neotyphodium/genética , Neotyphodium/ultraestrutura , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Simbiose , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
17.
Sci Rep ; 11(1): 4691, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633150

RESUMO

Studies have shown that the presence of tumor infiltrating lymphocytes (TILs) in Triple Negative Breast Cancer (TNBC) is associated with better prognosis. However, the molecular mechanisms underlying these immune cell differences are not well delineated. In this study, analysis of hematoxylin and eosin images from The Cancer Genome Atlas (TCGA) breast cancer cohort failed to show a prognostic benefit of TILs in TNBC, whereas CIBERSORT analysis, which quantifies the proportion of each immune cell type, demonstrated improved overall survival in TCGA TNBC samples with increased CD8 T cells or CD8 plus CD4 memory activated T cells and in Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) TNBC samples with increased gamma delta T cells. Twenty-five genes showed mutational frequency differences between the TCGA high and low T cell groups, and many play important roles in inflammation or immune evasion (ATG2B, HIST1H2BC, PKD1, PIKFYVE, TLR3, NOTCH3, GOLGB1, CREBBP). Identification of these mutations suggests novel mechanisms by which the cancer cells attract immune cells and by which they evade or dampen the immune system during the cancer immunoediting process. This study suggests that integration of mutations with CIBERSORT analysis could provide better prediction of outcomes and novel therapeutic targets in TNBC cases.


Assuntos
Bases de Dados Genéticas , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/terapia
18.
mBio ; 13(1): e0289221, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35100865

RESUMO

Plants form commensal associations with soil microorganisms, creating a root microbiome that provides benefits, including protection against pathogens. While bacteria can inhibit pathogens through the production of antimicrobial compounds in vitro, it is largely unknown how microbiota contribute to pathogen protection in planta. We developed a gnotobiotic model consisting of Arabidopsis thaliana and the opportunistic pathogen Pseudomonas sp. N2C3, to identify mechanisms that determine the outcome of plant-pathogen-microbiome interactions in the rhizosphere. We screened 25 phylogenetically diverse Pseudomonas strains for their ability to protect against N2C3 and found that commensal strains closely related to N2C3, including Pseudomonas sp. WCS365, were more likely to protect against pathogenesis. We used comparative genomics to identify genes unique to the protective strains and found no genes that correlate with protection, suggesting that variable regulation of components of the core Pseudomonas genome may contribute to pathogen protection. We found that commensal colonization level was highly predictive of protection, so we tested deletions in genes required for Arabidopsis rhizosphere colonization. We identified a response regulator colR, and two ColR-dependent genes with predicted roles in membrane modifications (warB and pap2_2), that are required for Pseudomonas-mediated protection from N2C3. We found that WCS365 also protects against the agricultural pathogen Pseudomonas fuscovaginae SE-1, the causal agent of bacterial sheath brown rot of rice, in a ColR-dependent manner. This work establishes a gnotobiotic model to uncover mechanisms by which members of the microbiome can protect hosts from pathogens and informs our understanding of the use of beneficial strains for microbiome engineering in dysbiotic soil systems. IMPORTANCE Microbiota can protect diverse hosts from pathogens, and microbiome dysbiosis can result in increased vulnerability to opportunistic pathogens. Here, we developed a rhizosphere commensal-pathogen model to identify bacterial strains and mechanisms that can protect plants from an opportunistic Pseudomonas pathogen. Our finding that protective strains are closely related to the pathogen suggests that the presence of specific microbial taxa may help protect plants from disease. We found that commensal colonization level was highly correlated with protection, suggesting that competition with pathogens may play a role in protection. As we found that commensal Pseudomonas were also able to protect against an agricultural pathogen, this system may be broadly relevant for identifying strains and mechanisms to control agriculturally important pathogens. This work also suggests that beneficial plant-associated microbes may be useful for engineering soils where microbial complexity is low, such as hydroponic, or disturbed agricultural soils.


Assuntos
Arabidopsis , Pseudomonas fluorescens , Arabidopsis/microbiologia , Pseudomonas fluorescens/genética , Pseudomonas/genética , Solo , Raízes de Plantas/microbiologia , Fatores de Transcrição
19.
Microbiol Resour Announc ; 10(21): e0028421, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042473

RESUMO

We report the draft genome sequences of five native nitrogen-fixing bacteria associated with roots of switchgrass isolated from the tallgrass prairies of Oklahoma. Nitrogen-fixing genes, including the nif cluster, are conserved across the Klebsiella and Kosakonia strains.

20.
Microbiome ; 9(1): 96, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910643

RESUMO

BACKGROUND: Despite their widespread distribution and ecological importance, protists remain one of the least understood components of the soil and rhizosphere microbiome. Knowledge of the roles that protists play in stimulating organic matter decomposition and shaping microbiome dynamics continues to grow, but there remains a need to understand the extent to which biological and environmental factors mediate protist community assembly and dynamics. We hypothesize that protists communities are filtered by the influence of plants on their rhizosphere biological and physicochemical environment, resulting in patterns of protist diversity and composition that mirror previously observed diversity and successional dynamics in rhizosphere bacterial communities. RESULTS: We analyzed protist communities associated with the rhizosphere and bulk soil of switchgrass (SG) plants (Panicum virgatum) at different phenological stages, grown in two marginal soils as part of a large-scale field experiment. Our results reveal that the diversity of protists is lower in rhizosphere than bulk soils, and that temporal variations depend on soil properties but are less pronounced in rhizosphere soil. Patterns of significantly prevalent protists groups in the rhizosphere suggest that most protists play varied ecological roles across plant growth stages and that some plant pathogenic protists and protists with omnivorous diets reoccur over time in the rhizosphere. We found that protist co-occurrence network dynamics are more complex in the rhizosphere compared to bulk soil. A phylogenetic bin-based null model analysis showed that protists' community assembly in our study sites is mainly controlled by homogenous selection and dispersal limitation, with stronger selection in rhizosphere than bulk soil as SG grew and senesced. CONCLUSIONS: We demonstrate that environmental filtering is a dominant determinant of overall protist community properties and that at the rhizosphere level, plant control on the physical and biological environment is a critical driver of protist community composition and dynamics. Since protists are key contributors to plant nutrient availability and bacterial community composition and abundance, mapping and understanding their patterns in rhizosphere soil is foundational to understanding the ecology of the root-microbe-soil system. Video Abstract.


Assuntos
Panicum , Rizosfera , Eucariotos/genética , Filogenia , Raízes de Plantas , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA