Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398651

RESUMO

The development of selective extraction protocols for Cannabis-inflorescence constituents is still a significant challenge. The characteristic Cannabis fragrance can be mainly ascribed to monoterpenes, sesquiterpenes and oxygenated terpenoids. This work investigates the entrapment of Cannabis terpenes in olive oil from inflorescences via stripping under mild vacuum during the rapid microwave-assisted decarboxylation of cannabinoids (MW, 120 °C, 30 min) and after subsequent extraction of cannabinoids (60 and 100 °C). The profiles of the volatiles collected in the oil samples before and after the extraction step were evaluated using static headspace solid-phase microextraction (HS-SPME), followed by gas chromatography coupled to mass spectrometry (GC-MS). Between the three fractions obtained, the first shows the highest volatile content (~37,400 mg/kg oil), with α-pinene, ß-pinene, ß-myrcene, limonene and trans-ß-caryophyllene as the main components. The MW-assisted extraction at 60 and 100 °C of inflorescences using the collected oil fractions allowed an increase of 70% and 86% of total terpene content, respectively. Considering the initial terpene amount of 91,324.7 ± 2774.4 mg/kg dry inflorescences, the percentage of recovery after decarboxylation was close to 58% (mainly monoterpenes), while it reached nearly 100% (including sesquiterpenes) after extraction. The selective and efficient extraction of volatile compounds, while avoiding direct contact between the matrix and extraction solvents, paves the way for specific applications in various aromatic plants. In this context, aromatized extracts can be employed to create innovative Cannabis-based products within the hemp processing industry, as well as in perfumery, cosmetics, dietary supplements, food, and the pharmaceutical industry.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Sesquiterpenos Policíclicos , Sesquiterpenos , Terpenos/química , Canabinoides/química , Cannabis/química , Azeite de Oliva , Descarboxilação , Micro-Ondas , Monoterpenos/química , Sesquiterpenos/química , Agonistas de Receptores de Canabinoides
2.
J Sci Food Agric ; 104(10): 5689-5697, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372563

RESUMO

BACKGROUND: To manage industrial waste in accordance with the circular bioeconomy concept it is sometimes necessary to handle grape seeds, an abundant by-product of the wine-making process. This study presents a process based on ultrasound technology for the extraction of grape-seed proteins, due to their nutritional and techno-functional properties. The protein content of extracts obtained under silent and lab-scale conditions was compared with that obtained under semi-industrial ultrasound conditions, and the chemical composition (carbohydrates, total phenols, and lipids) and the elemental profiles of the final, up-scaled downstream extracts were characterized. RESULTS: This work found that the maximum amount of protein in the final product was 378.31 g.kg-1 of the extract. Chemical characterization revealed that each 1 kg of extract had an average content of 326.19 g gallic acid equivalent as total phenols, 162.57 g glucose equivalent as carbohydrates, and 382.76 g of lipophilic compounds. Furthermore, when the extract was checked for hazardous elements, none were found in levels that could be considered a risk for human health. CONCLUSION: The proposed semi-industrial strategy has the potential to contribute greatly to the valorization of grape seeds through the preparation of a protein-rich extract that can be used as an alternative to synthetic wine stabilizers and for the development of novel food and nutraceutical products. © 2024 Society of Chemical Industry.


Assuntos
Proteínas de Plantas , Sementes , Vitis , Vitis/química , Sementes/química , Proteínas de Plantas/química , Proteínas de Plantas/análise , Fenóis/química , Fenóis/análise , Resíduos Industriais/análise , Resíduos Industriais/economia , Ultrassom/métodos , Vinho/análise , Manipulação de Alimentos/métodos , Extratos Vegetais/química
3.
AAPS PharmSciTech ; 25(6): 165, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009915

RESUMO

CaCO3 nanoparticles (nano-CaCO3) as nano-templates were prepared using CaCl2 and Na2CO3 solutions under controlled sonication (19.5 kHz). Using the same ultrasonic device, subsequently, hollow mesoporous silica nanoparticles (HMSNs) were obtained by the hard template of nano-CaCO3. HMSNs were selected as carriers for the antifungal drug voriconazole (VOR) loading to overcome poor water solubility. Three-dimensional CaCO3 nanosheets HMSNs were obtained under gentle sonication. Three-dimensional CaCO3 nanosheets of 24.5 nm (hydrodynamic diameter) were obtained under 17.6 W for 3 min. HMSNs were synthesized by double-template method with nano-CaCO3 as the hard template. Transmission electron microscopy measurements showed that the prepared HMSNs possess hollow structures with particle size between 110 and 120 nm. Nitrogen physisorption at -196 °C revealed that the HMSNs had high surface area (401.57 m2/g), high pore volume (0.11 cm3/g), and uniform pore size (2.22 nm) that facilitated the effective encapsulation of VOR in the HMSNs. The loading capacity of VOR (wt%) on the HMSNs was 7.96%, and the total VOR release amount of VOR-HMSNs material was 71.40% at 480 min. The kinetic model confirmed that the release mechanism of HMSNs nanoparticles followed Fickian diffusion at pH = 7.4 and 37 °C. Moreover, the cumulative VOR release at 42 °C (86.05%) was higher than that at 37 °C (71.40%). The cumulative release amount of VOR from the VOR-HMSNs material was 92.37% at pH = 5.8 at the same temperature. Both nano-CaCO3 templates and HMSNs were prepared by sonication at 19.5 kHz. The as-prepared HMSNs can effectively encapsulate VOR and released drug by Fickian diffusion.


Assuntos
Antifúngicos , Carbonato de Cálcio , Nanopartículas , Tamanho da Partícula , Dióxido de Silício , Voriconazol , Nanopartículas/química , Carbonato de Cálcio/química , Dióxido de Silício/química , Voriconazol/química , Voriconazol/administração & dosagem , Porosidade , Antifúngicos/administração & dosagem , Antifúngicos/química , Portadores de Fármacos/química , Solubilidade , Liberação Controlada de Fármacos , Sonicação/métodos
4.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37108520

RESUMO

The crucial role of dyslipidaemia, especially hypercholesterolemia, in the development of atherosclerosis-related cardiovascular diseases has been extensively documented in genetic, pathologic, observational and intervention studies. The European guidelines for dyslipidaemia management include the possible use of lipid-lowering nutraceuticals to support a relatively large number of natural compounds. In this context, we have conducted a study to investigate whether dietary supplementation with a functional nutraceutical beverage, containing a standardized polyphenolic fraction from fruit, red yeast rice, phytosterols, and berberine complexed with ß-cyclodextrin, could positively affect serum lipid concentration in 14 subjects with hypercholesterolemia. After 12 weeks of treatment, dietary supplementation with this nutraceutical combination was associated with significant improvements in total cholesterol, low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol (non-HDL-C) and apolipoprotein B, compared to baseline. Compliance was excellent and no adverse effects were reported. In conclusion, this study demonstrates that 100 mL of a functional beverage containing lipid-lowering nutraceuticals safely leads to significant improvements in serum lipids in subjects with moderate hypercholesterolemia. Future research is needed to unravel the role that the polyphenols contained in fruit extracts play in the reduction of cholesterolemia and in cardiovascular disease prevention.


Assuntos
Dislipidemias , Hipercolesterolemia , Humanos , Hipercolesterolemia/complicações , Sucos de Frutas e Vegetais , Metabolismo dos Lipídeos , Suplementos Nutricionais/efeitos adversos , Colesterol , Dislipidemias/tratamento farmacológico , Dislipidemias/complicações
5.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677527

RESUMO

Many scientists are working hard to find green alternatives to classical synthetic methods. Today, state-of-the-art ultrasonic and grinding techniques already drive the production of organic compounds on an industrial scale. The physicochemical and chemical behavior of cyclodextrins often differs from the typical properties of classic organic compounds and carbohydrates. The usually poor solubility and complexing properties of cyclodextrins can require special techniques. By eliminating or reducing the amount of solvent needed, green alternatives can reform classical synthetic methods, making them attractive for environmentally friendly production and the circular economy. The lack of energy-intensive synthetic and purification steps could transform currently inefficient processes into feasible methods. Mechanochemical reaction mechanisms are generally different from normal solution-chemistry mechanisms. The absence of a solvent and the presence of very high local temperatures for microseconds facilitate the synthesis of cyclodextrin derivatives that are impossible or difficult to produce under classical solution-chemistry conditions. Although mechanochemistry does not provide a general solution to all problems, several good examples show that this new technology can open up efficient synthetic pathways.

6.
Molecules ; 28(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38138521

RESUMO

Mechanochemical treatment of various organic molecules is an emerging technology of green processes in biofuel, fine chemicals, or food production. Many biopolymers are involved in isolating, derivating, or modifying molecules of natural origin. Mechanochemistry provides a powerful tool to achieve these goals, but the unintentional modification of biopolymers by mechanochemical manipulation is not always obvious or even detectable. Although modeling molecular changes caused by mechanical stresses in cavitation and grinding processes is feasible in small model compounds, simulation of extrusion processes primarily relies on phenomenological approaches that allow only tool- and material-specific conclusions. The development of analytical and computational techniques allows for the inline and real-time control of parameters in various mechanochemical processes. Using artificial intelligence to analyze process parameters and product characteristics can significantly improve production optimization. We aim to review the processes and consequences of possible chemical, physicochemical, and structural changes.


Assuntos
Inteligência Artificial , Fenômenos Químicos , Biopolímeros , Estresse Mecânico
7.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771086

RESUMO

Continuous-flow chemistry has become a mainstream process and a notable trend among emerging technologies for drug synthesis. It is routinely used in academic and industrial laboratories to generate a wide variety of molecules and building blocks. The advantages it provides, in terms of safety, speed, cost efficiency and small-equipment footprint compared to analog batch processes, have been known for some time. What has become even more important in recent years is its compliance with the quality objectives that are required by drug-development protocols that integrate inline analysis and purification tools. There can be no doubt that worldwide government agencies have strongly encouraged the study and implementation of this innovative, sustainable and environmentally friendly technology. In this brief review, we list and evaluate the development and applications of continuous-flow processes for antibiotic synthesis. This work spans the period of 2012-2022 and highlights the main cases in which either active ingredients or their intermediates were produced under continuous flow. We hope that this manuscript will provide an overview of the field and a starting point for a deeper understanding of the impact of flow chemistry on the broad panorama of antibiotic synthesis.


Assuntos
Desenvolvimento de Medicamentos , Tecnologia , Laboratórios , Antibacterianos
8.
Chem Soc Rev ; 50(3): 1785-1812, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33313620

RESUMO

This tutorial review focuses on the valorisation of biomass by sonochemical and mechanochemical activation. Although several of the examples reported herein rely on the use of model compounds rather than native feedstocks, the conversion of lignocellulosic fractions into valuable compounds is a great opportunity with which to more sustainably exploit natural resources, from environmental, economic and social points of view. The use of non-conventional technologies that generate high-energy microenvironments can improve biomass deconstruction and the accessibility of catalysts, granting higher conversion and selectivity. The critical parameters in sonochemical and mechanochemical conversions have been analysed together with the most common devices and reactors, and the potential of sonocatalysis and mechanocatalysis as emerging tools for both catalytic and biocatalytic biomass conversion will be discussed. A SWOT (strengths, weaknesses, opportunities and threats) analysis will provide an overview of the effective feasibility of these approaches in a biorefinery context. Although these technologies offer indisputable advantages (mild reaction conditions, enhanced reaction rates and mass transfer), their mechanisms and the systematic adjustment of parameters to give optimal outcomes still require further investigation, which will pave the way for reproducible and scalable experiments. Indeed, process scale-up can be accomplished both in batch and flow mode. However, results are not particularly predictable, despite the accurate control of instrumental variables, because of the variability found in biomass sources and the complexity inherent in structures.


Assuntos
Biomassa , Sonicação , Catálise , Celulose/química , Hidrogenação , Oxirredução
9.
Molecules ; 27(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056763

RESUMO

In the past, the use of mechanochemical methods in organic synthesis was reported as somewhat of a curiosity. However, perceptions have changed over the last two decades, and this technology is now being appreciated as a greener and more efficient synthetic method. The qualified "offer" of ball mills that make use of different set-ups, materials, and dimensions has allowed this technology to mature. Nevertheless, the intrinsic batch nature of mechanochemical methods hinders industrial scale-ups. New studies have found, in reactive extrusion, a powerful technique with which to activate chemical reactions with mechanical forces in a continuous flow. This new environmentally friendly mechanochemical synthetic method may be able to miniaturize production plants with outstanding process intensifications by removing organic solvents and working in a flow mode. Compared to conventional processes, reactive extrusions display high simplicity, safety, and cleanliness, which can be exploited in a variety of applications. This paper presents perspective examples in the better-known areas of reactive extrusions, including oxidation reactions, polymer processing, and biomass conversion. This work should stimulate further developments, as it highlights the versatility of reactive extrusion and the huge potential of solid-phase flow chemistry.

10.
Molecules ; 27(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35684534

RESUMO

Lignin is a fascinating aromatic biopolymer with high valorization potentiality. Besides its extensive value in the biorefinery context, as a renewable source of aromatics lignin is currently under evaluation for its huge potential in biomedical applications. Besides the specific antioxidant and antimicrobial activities of lignin, that depend on its source and isolation procedure, remarkable progress has been made, over the last five years, in the isolation, functionalization and modification of lignin and lignin-derived compounds to use as carriers for biologically active substances. The aim of this review is to summarize the current state of the art in the field of lignin-based carrier systems, highlighting the most important results. Furthermore, the possibilities and constraints related to the physico-chemical properties of the lignin source will be reviewed herein as well as the modifications and processing required to make lignin suitable for the loading and release of active compounds.


Assuntos
Excipientes , Lignina , Antioxidantes/farmacologia , Lignina/química
11.
J Org Chem ; 86(20): 13857-13872, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34125541

RESUMO

Microwave-assisted organic synthesis has been widely studied and deliberated, opening up some controversial issues as well. Nowadays, microwave chemistry is a mature technology that has been well demonstrated in many cases with numerous advantages in terms of the reaction rate and yield. The strategies toward scaling up find an ally in continuous-flow reactor technology comparing dielectric and conductive heating.

12.
J Org Chem ; 86(20): 13833-13856, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34156841

RESUMO

Sonochemistry, the use of sound waves, usually within the ultrasonic range (>20 kHz), to boost or alter chemical properties and reactivity constitutes a long-standing and sustainable technique that has, however, received less attention than other activation protocols despite affordable setups. Even if unnecessary to underline the impact of ultrasound-based strategies in a broad range of chemical and biological applications, there is considerable misunderstanding and pitfalls regarding the interpretation of cavitational effects and the actual role played by the acoustic field. In this Perspective, with an eye on mechanisms in particular, we discuss the potentiality of sonochemistry in synthetic organic chemistry through selected examples of past and recent developments. Such examples illustrate specific controlling effects and working rules. Looking back at the past while looking forward to advancing the field, some essentials of sonochemical activation will be distilled.


Assuntos
Ultrassom
13.
Chirality ; 33(2): 72-80, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33300236

RESUMO

Primo Levi (1919-1987) has become an iconic figure at the intersection of chemistry and culture. Levi has long been praised for his autobiographical account as survivor in Auschwitz and by his literary masterpiece "The Periodic Table." Little is however known beyond such facts, especially his academic period and early research on stereochemistry at the University of Turin, which were abruptly truncated by the racial laws and WWII. Even if, later on, Primo Levi succeeded as industrial chemist, he had a vivid interest in molecular asymmetry that lasted through his entire life. This concise paper highlights a little known academic period in the midst of social and political upheaval. Levi left us his humanity in an otherwise tortuous life, and his literature took inspiration from chemistry; perhaps as a metaphor connecting the physical world and people's life.

14.
Mar Drugs ; 19(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073184

RESUMO

Euphausia superba, commonly known as krill, is a small marine crustacean from the Antarctic Ocean that plays an important role in the marine ecosystem, serving as feed for most fish. It is a known source of highly bioavailable omega-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In preclinical studies, krill oil showed metabolic, anti-inflammatory, neuroprotective and chemo preventive effects, while in clinical trials it showed significant metabolic, vascular and ergogenic actions. Solvent extraction is the most conventional method to obtain krill oil. However, different solvents must be used to extract all lipids from krill because of the diversity of the polarities of the lipid compounds in the biomass. This review aims to provide an overview of the chemical composition, bioavailability and bioaccessibility of krill oil, as well as the mechanisms of action, classic and non-conventional extraction techniques, health benefits and current applications of this marine crustacean.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Suplementos Nutricionais , Euphausiacea , Ácidos Graxos Ômega-3 , Óleos de Peixe/química , Fármacos Neuroprotetores , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Exercício Físico , Ácidos Graxos Ômega-3/farmacocinética , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Óleos de Peixe/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Doenças Inflamatórias Intestinais/dietoterapia , Doenças Inflamatórias Intestinais/prevenção & controle , Doenças Metabólicas/dietoterapia , Doenças Metabólicas/prevenção & controle , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
15.
Molecules ; 26(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500627

RESUMO

Cyclodextrin (CD) derivatives are a challenge, mainly due to solubility problems. In many cases, the synthesis of CD derivatives requires high-boiling solvents, whereas the product isolation from the aqueous methods often requires energy-intensive processes. Complex formation faces similar challenges in that it involves interacting materials with conflicting properties. However, many authors also refer to the formation of non-covalent bonds, such as the formation of inclusion complexes or metal-organic networks, as reactions or synthesis, which makes it difficult to classify the technical papers. In many cases, the solubility of both the starting material and the product in the same solvent differs significantly. The sweetest point of mechanochemistry is the reduced demand or complete elimination of solvents from the synthesis. The lack of solvents can make syntheses more economical and greener. The limited molecular movements in solid-state allow the preparation of CD derivatives, which are difficult to produce under solvent reaction conditions. A mechanochemical reaction generally has a higher reagent utilization rate. When the reaction yields a good guest co-product, solvent-free conditions can be slower than in solution conditions. Regioselective syntheses of per-6-amino and alkylthio-CD derivatives or insoluble cyclodextrin polymers and nanosponges are good examples of what a greener technology can offer through solvent-free reaction conditions. In the case of thiolated CD derivatives, the absence of solvents results in significant suppression of the thiol group oxidation, too. The insoluble polymer synthesis is also more efficient when using the same molar ratio of the reagents as the solution reaction. Solid reactants not only reduce the chance of hydrolysis of multifunctional reactants or side reactions, but the spatial proximity of macrocycles also reduces the length of the spacing formed by the crosslinker. The structure of insoluble polymers of the mechanochemical reactions generally is more compact, with fewer and shorter hydrophilic arms than the products of the solution reactions.

16.
Molecules ; 26(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504036

RESUMO

Over the past few decades, antibiotics have been considered emerging pollutants due to their persistence in aquatic ecosystems. Even at low concentrations, these pollutants contribute to the phenomenon of antibiotic resistance, while their degradation is still a longstanding challenge for wastewater treatment. In the present literature survey, we review the recent advances in synergistic techniques for antibiotic degradation in wastewater that combine either ultrasound (US) or hydrodynamic cavitation (HC) and oxidative, photo-catalytic, and enzymatic strategies. The degradation of sulfadiazine by HC/persulfate (PS)/H2O2/α-Fe2O3, US/PS/Fe0, and sono-photocatalysis with MgO@CNT nanocomposites processes; the degradation of tetracycline by US/H2O2/Fe3O4, US/O3/goethite, and HC/photocatalysis with TiO2 (P25) sono-photocatalysis with rGO/CdWO4 protocols; and the degradation of amoxicillin by US/Oxone®/Co2+ are discussed. In general, a higher efficiency of antibiotics removal and a faster structure degradation rate are reported under US or HC conditions as compared with the corresponding silent conditions. However, the removal of ciprofloxacin hydrochloride reached only 51% with US-assisted laccase-catalysis, though it was higher than those using US or enzymatic treatment alone. Moreover, a COD removal higher than 85% in several effluents of the pharmaceutical industry (500-7500 mg/L COD) was achieved by the US/O3/CuO process.


Assuntos
Antibacterianos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Humanos
17.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557106

RESUMO

Aiming to fulfil the sustainability criteria of future biorefineries, a novel biomass pretreatment combining natural deep eutectic solvents (NaDESs) and microwave (MW) technology was developed. Results showed that NaDESs have a high potential as green solvents for lignin fractionation/recovery and sugar release in the following enzymatic hydrolysis. A new class of lignin derived NaDESs (LigDESs) was also investigated, showing promising effects in wheat straw delignification. MW irradiation enabled a fast pretreatment under mild condition (120 °C, 30 min). To better understand the interaction of MW with these green solvents, the dielectric properties of NaDESs were investigated. Furthermore, a NaDES using the lignin recovered from biomass pretreatment as hydrogen bond donor was prepared, thus paving the way for a "closed-loop" biorefinery process.


Assuntos
Biomassa , Lignina/química , Lignina/isolamento & purificação , Micro-Ondas , Solventes/química , Química Verde
18.
J Drug Deliv Sci Technol ; 64: 102589, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34035845

RESUMO

The main antiviral drug-cyclodextrin interactions, changes in physicochemical and physiological properties of the most commonly used virucides are summarized. The potential complexation of antiviral molecules against the SARS-Cov2 also pointed out the lack of detailed information in designing effective and general medicines against viral infections. The principal problem of the current molecules is the 3D structures of the currently active compounds. Improving the solubility or bioavailability of antiviral molecules is possible, however, there is no universal solution, and the complexation experiments dominantly use the already approved cyclodextrin derivatives. This review discusses the basic properties of the different cyclodextrin derivatives, their potential in antiviral formulations, and the prevention and treatment of viral infections. The biologically active new cyclodextrin derivatives are also discussed.

19.
Molecules ; 25(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370073

RESUMO

In recent years, increased awareness of the health benefits associated with consuming soy-based foods, knowledge of milk-related allergies and a move towards more sustainable food production have led to an increase in the number of available soy-based products. The biggest producers in the world, the USA, South America and China, are from the Pacific region. This enormous production is accompanied by the accumulation of related by-products, in particular, a substance that is known as okara. Okara is a paste that is rich in fibre (50%), protein (25%), fat (10%), vitamins and trace elements. Its proper use would lead to economic advantages and a reduction in the potential for polluting the environment. Its high fibre content and low production costs mean that it could also be used as a dietary supplement to prevent diabetes, obesity and hyperlipidaemia. Chemical or enzymatic treatment, fermentation, extrusion, high pressure and micronisation can all increase the soluble fibre content, and thus improve nutritional quality and processing properties. However, the product also degrades rapidly due to its high moisture content (70-80%), which makes it difficult to handle and expensive to dry by conventional means. The aim of this paper is therefore to thoroughly study the existing literature on this subject in order to develop a general protocol for okara exploitation and valorisation. A cost/benefit analysis could drive the design of eco-friendly, sustainable protocols for the preparation of high-value nutritional products.


Assuntos
Fermentação , Glycine max/química , Alimentos de Soja/análise , Fibras na Dieta/análise , Suplementos Nutricionais/análise , Lipídeos/análise , Lipídeos/química , Proteínas de Plantas/análise , Proteínas de Plantas/química , Polissacarídeos/análise , Polissacarídeos/química , Leite de Soja/química
20.
Molecules ; 25(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531905

RESUMO

Woody liana Schisandra chinensis contains valuable lignans, which are phenylpropanoids with valuable biological activity. Among green and selective extraction methods, supercritical carbon dioxide (SC-CO2) was shown to be the method of choice for the recovery of these naturally occurring compounds. Carbon dioxide (CO2) was the solvent with the flow rate (10-25 g/min) with 2% ethanol as co-solvent. In this piece of work operative parameters and working conditions were optimized by experimenting with different pressures (200-400 bars) and temperatures (40-60 °C). The extraction time varied from 60 to 120 min. HPLC-SPD-ESI -MS/MS techniques were applied to detect target analytes. Twenty-six different lignans were identified in the S. chinensis SC-CO2 extracts.


Assuntos
Dióxido de Carbono/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia com Fluido Supercrítico/métodos , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Dióxido de Carbono/isolamento & purificação , Schisandra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA