Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nutr Neurosci ; 23(4): 309-320, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30039750

RESUMO

Objectives: A strong rise of the fructose content in the human diet occurred in the last decade, as corn syrup is widely used as a sweetener for beverages and processed food. Since young people make a widespread consumption of added sugars, we evaluated the effects of a two weeks fructose-rich diet on brain redox homeostasis, autophagy and synaptic plasticity in the cortex of young and adults rats, in order to highlight the early risks to which brain is exposed.Methods and Results: Short-term fructose feeding was associated with an imbalance of redox homeostasis, as lower amount of Nuclear factor (erythroid derived 2)-like 2, lower activity of Glucose 6-phosphate dehydrogenase and Glutathione reductase, together with lower Glutathione/Oxidized Glutathione ratio, were found in fructose-fed young and adult rats. Fructose-rich diet was also associated with the activation of autophagy, as higher levels of Beclin, LC3 II and P62 were detected in cortex of fructose-fed rats. A diet associated decrease of synaptophysin, synapsin I, and synaptotagmin I, was found in fructose-fed young and adult rats. Interestingly, BDNF amount was significantly lower only in fructose-fed adult rats, while the level of its receptor TrkB decreased in both groups of treated rats. A further marker of brain functioning, Acetylcholinesterase activity, was found increased only in fructose-fed young animals.Conclusion: Overall, our findings suggest that young rats may severely suffer from the deleterious influence of fructose on brain health as the adults and provide experimental data suggesting the need of targeted nutritional strategies to reduce its amount in foods.


Assuntos
Autofagia/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Frutose/administração & dosagem , Fator 2 Relacionado a NF-E2/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991770

RESUMO

Dietary fats and sugars were identified as risk factors for overweight and neurodegeneration, especially in middle-age, an earlier stage of the aging process. Therefore, our aim was to study the metabolic response of both white adipose tissue and brain in middle aged rats fed a typical Western diet (high in saturated fats and fructose, HFF) and verify whether a similarity exists between the two tissues. Specific cyto/adipokines (tumor necrosis factor alpha (TNF-α), adiponectin), critical obesity-inflammatory markers (haptoglobin, lipocalin), and insulin signaling or survival protein network (insulin receptor substrate 1 (IRS), Akt, Erk) were quantified in epididymal white adipose tissue (e-WAT), hippocampus, and frontal cortex. We found a significant increase of TNF-α in both e-WAT and hippocampus of HFF rats, while the expression of haptoglobin and lipocalin was differently affected in the various tissues. Interestingly, adiponectin amount was found significantly reduced in e-WAT, hippocampus, and frontal cortex of HFF rats. Insulin signaling was impaired by HFF diet in e-WAT but not in brain. The above changes were associated with the decrease in brain derived neurotrophic factor (BDNF) and synaptotagmin I and the increase in post-synaptic protein PSD-95 in HFF rats. Overall, our investigation supports for the first time similarities in the response of adipose tissue and brain to Western diet.


Assuntos
Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Dieta Ocidental , Metabolismo Energético , Adipócitos/metabolismo , Animais , Biomarcadores , Citocinas/sangue , Citocinas/metabolismo , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Insulina/metabolismo , Masculino , Modelos Biológicos , Especificidade de Órgãos , Ratos , Receptor trkB/metabolismo , Transdução de Sinais
3.
Eur J Nutr ; 55(1): 1-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26476631

RESUMO

BACKGROUND: Mitochondria are the main cellular sites devoted to ATP production and lipid oxidation. Therefore, the mitochondrial dysfunction could be an important determinant of cellular fate of circulating lipids, that accumulate in the cytoplasm, if they are not oxidized. The ectopic fat accumulation is associated with the development of insulin resistance, and a link between mitochondrial dysfunction and insulin resistance has been proposed. METHODS: Recent data on the possible link existing between mitochondrial dysfunction in the liver and diet induced obesity will be summarized, focusing on the three factors that affect the mitochondrial oxidation of metabolic fuels, i.e. organelle number, organelle activity, and energetic efficiency of the mitochondrial machinery in synthesizing ATP. Search in PubMed relevant articles from 2003 to 2014 was conducted, by using query "liver mitochondria and obesity" "hepatic mitochondria and obesity" "liver mitochondria and high fat diet" and "hepatic mitochondria and high fat diet" and including related articles by the same groups. RESULTS: Several works, by using different physiological approaches, have dealt with alteration in mitochondrial function in obesity and diabetes. Most results show that hepatic mitochondrial function is impaired in models of obesity and insulin resistance induced by high-fat or highfructose feeding. CONCLUSIONS: Since mitochondria are the main producers of both cellular energy and free radicals, dysfunctional mitochondria could play an important role in the development of insulin resistance and ectopic fat storage in the liver, thus supporting the emerging idea that mitochondrial dysfunction is closely related to the development of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Frutose/efeitos adversos , Resistência à Insulina , Mitocôndrias Hepáticas/patologia , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Frutose/administração & dosagem , Humanos , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/fisiopatologia
4.
Eur J Nutr ; 54(2): 183-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24743896

RESUMO

PURPOSE: To study the effect of isoenergetic administration to adult rats of high-fat or high-fat--high-fructose diet for 2 weeks on skeletal muscle mitochondrial energetic. METHODS: Body and skeletal muscle composition, energy balance, plasma lipid profile and glucose tolerance were measured, together with mitochondrial functionality, oxidative stress and antioxidant defense. RESULTS: Rats fed high-fat--high-fructose diet exhibited significantly higher plasma triglycerides and non-esterified fatty acids, together with significantly higher plasma glucose and insulin response to glucose load. Skeletal muscle triglycerides and ceramide were significantly higher in rats fed high-fat--high-fructose diet. Skeletal muscle mitochondrial energetic efficiency and uncoupling protein 3 content were significantly higher, while adenine nucleotide translocase content was significantly lower, in rats fed high-fat or high-fat--high-fructose diet. CONCLUSIONS: The results suggest that a high-fat--high-fructose diet even without hyperphagia is able to increase lipid flow to skeletal muscle and mitochondrial energetic efficiency, with two detrimental effects: (a) energy sparing that contributes to the early onset of obesity and (b) reduced oxidation of fatty acids and lipid accumulation in skeletal muscle, which could generate insulin resistance.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Metabolismo Energético , Frutose/efeitos adversos , Resistência à Insulina , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Ceramidas/metabolismo , Ingestão de Energia , Ácidos Graxos não Esterificados/sangue , Membro Posterior , Hiperlipidemias/sangue , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Canais Iônicos/metabolismo , Masculino , Mitocôndrias Musculares/enzimologia , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/enzimologia , Fosforilação Oxidativa , Estresse Oxidativo , Ratos Sprague-Dawley , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Proteína Desacopladora 3 , Aumento de Peso
5.
Int J Mol Sci ; 16(5): 10674-85, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25970752

RESUMO

Aging is associated with a progressive loss of maximal cell functionality, and mitochondria are considered a key factor in aging process, since they determine the ATP availability in the cells. Mitochondrial performance during aging in skeletal muscle is reported to be either decreased or unchanged. This heterogeneity of results could partly be due to the method used to assess mitochondrial performance. In addition, in skeletal muscle the mitochondrial population is heterogeneous, composed of subsarcolemmal and intermyofibrillar mitochondria. Therefore, the purpose of the present review is to summarize the results obtained on the functionality of the above mitochondrial populations during aging, taking into account that the mitochondrial performance depends on organelle number, organelle activity, and energetic efficiency of the mitochondrial machinery in synthesizing ATP from the oxidation of fuels.


Assuntos
Envelhecimento/metabolismo , Metabolismo Energético , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Humanos , Músculo Esquelético/crescimento & desenvolvimento
6.
Exp Physiol ; 99(9): 1203-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24972835

RESUMO

The purpose of the present study was to examine the short-term effect of high-fat or high-fat-high-fructose feeding on hepatic lipid metabolism and mitochondrial function in adult sedentary rats. Adult male rats were fed a high-fat or high-fat-high-fructose diet for 2 weeks. Body and liver composition, hepatic steatosis, plasma lipid profile and hepatic insulin sensitivity, together with whole-body and hepatic de novo lipogenesis, were assessed. Hepatic mitochondrial mass, functionality, oxidative stress and antioxidant defense were also measured. Rats fed the high-fat-high-fructose diet exhibited significantly higher plasma triglycerides, non-esterified fatty acids, insulin and indexes of hepatic insulin resistance compared with rats fed a low-fat or a high-fat diet. Hepatic triglycerides and ceramide, as well as the degree of steatosis and necrosis, were significantly higher, while liver p-Akt was significantly lower, in rats fed high-fat-high-fructose diet than in rats fed high-fat diet. A significant increase in non-protein respiratory quotient and hepatic fatty acid synthase and stearoyl CoA desaturase activity was found in rats fed the high-fat-high-fructose diet compared with those fed the high-fat diet. Significantly lower mitochondrial oxidative capacity but significantly higher oxidative stress was found in rats fed high-fat and high-fat-high-fructose diets compared with rats fed low-fat diet, while mitochondrial mass significantly increased only in rats fed high-fat-high-fructose diet. In conclusion, short-term consumption of a Western diet, rich in saturated fats and fructose, is more conducive to the development of liver steatosis and deleterious to glucose homeostasis than a high-fat diet.


Assuntos
Dieta Hiperlipídica , Carboidratos da Dieta/toxicidade , Fígado Gorduroso/etiologia , Frutose/toxicidade , Lipogênese , Fígado/metabolismo , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Composição Corporal , Carboidratos da Dieta/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/sangue , Frutose/metabolismo , Insulina/sangue , Resistência à Insulina , Lipídeos/sangue , Masculino , Mitocôndrias Hepáticas/metabolismo , Dinâmica Mitocondrial , Estresse Oxidativo , Ratos Sprague-Dawley , Fatores de Risco , Fatores de Tempo
7.
Eur J Nutr ; 53(2): 413-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23728711

RESUMO

PURPOSE: To explore the effect of a fructose-rich diet on morphological and functional changes in white adipose tissue (WAT) that could contribute to the development of insulin resistance. METHODS: Adult sedentary rats were fed a fructose-rich diet for 8 weeks. Glucose tolerance test was carried out together with measurement of plasma triglycerides, non-esterified fatty acids and lipid peroxidation. In subcutaneous abdominal and intra-abdominal WAT, number and size of adipocytes together with cellular insulin sensitivity and lipolytic activity were assessed. RESULTS: Rats fed a fructose-rich diet exhibited a significant increase in plasma insulin, triglycerides, non-esterified fatty acids and lipid peroxidation, together with significantly increased body lipids and epididymal and mesenteric WAT, compared to controls. Mean adipocyte volume in subcutaneous abdominal WAT was significantly lower, while mean adipocyte volume in intra-abdominal WAT was significantly higher, in rats fed a fructose-rich diet compared to controls. A significant increase in larger adipocytes and a significant decrease in smaller adipocytes were found in intra-abdominal WAT in rats fed a fructose-rich diet compared to controls. Insulin's ability to inhibit lipolysis was blunted in subcutaneous abdominal and intra-abdominal adipocytes from fructose-fed rats. Accordingly, lower p-Akt/Akt ratio was found in WAT in rats fed a fructose-rich diet compared to controls. CONCLUSIONS: Long-term consumption of high levels of fructose elicits remarkable morphological and functional modifications, particularly in intra-abdominal WAT, that are highly predictive of obesity and insulin resistance and that contribute to the worsening of metabolic alterations peculiar in a fructose-rich, hypolipidic diet.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Frutose/administração & dosagem , Obesidade/fisiopatologia , Adipócitos/citologia , Animais , Contagem de Células , Tamanho Celular , Dieta , Ácidos Graxos não Esterificados/sangue , Teste de Tolerância a Glucose , Insulina/sangue , Resistência à Insulina , Gordura Intra-Abdominal/citologia , Peroxidação de Lipídeos , Lipólise , Masculino , Obesidade/etiologia , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue
8.
BMC Geriatr ; 14: 79, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24950599

RESUMO

BACKGROUND: We considered of interest to evaluate how aging affects mitochondrial function in skeletal muscle. METHODS: We measured mitochondrial oxidative capacity and proton leak, together with lipid oxidative damage, superoxide dismutase specific activity and uncoupling protein 3 content, in subsarcolemmal and intermyofibrillar mitochondria from adult (six months) and old (two years) rats. Body composition, resting metabolic rate and plasma non esterified fatty acid levels were also assessed. RESULTS: Old rats displayed significantly higher body energy and lipids, while body proteins were significantly lower, compared to adult rats. In addition, plasma non esterified fatty acid levels were significantly higher, while resting metabolic rates were found to be significantly lower, in old rats compared to adult ones. Significantly lower oxidative capacities in whole tissue homogenates and in intermyofibrillar and subsarcolemmal mitochondria were found in old rats compared to adult ones. Subsarcolemmal and intermyofibrillar mitochondria from old rats exhibited a significantly lower proton leak rate, while oxidative damage was found to be significantly higher only in subsarcolemmal mitochondria. Mitochondrial superoxide dismutase specific activity was not significantly affected in old rats, while significantly higher content of uncoupling protein 3 was found in both mitochondrial populations from old rats compared to adult ones, although the magnitude of the increase was lower in subsarcolemmal than in intermyofibrillar mitochondria. CONCLUSIONS: The decrease in oxidative capacity and proton leak in intermyofibrillar and subsarcolemmal mitochondria could induce a decline in energy expenditure and thus contribute to the reduced resting metabolic rate found in old rats, while oxidative damage is present only in subsarcolemmal mitochondria.


Assuntos
Envelhecimento/metabolismo , Canais Iônicos/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia , Prótons , Animais , Regulação para Baixo/fisiologia , Metabolismo Energético/fisiologia , Canais Iônicos/antagonistas & inibidores , Masculino , Mitocôndrias Musculares/química , Proteínas Mitocondriais/antagonistas & inibidores , Músculo Esquelético/química , Miofibrilas/química , Miofibrilas/metabolismo , Ratos , Ratos Wistar , Sarcolema/química , Sarcolema/metabolismo , Proteína Desacopladora 3
9.
Br J Nutr ; 110(11): 1996-2003, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23693085

RESUMO

In the present study, the effect of long-term fructose feeding on skeletal muscle mitochondrial energetics was investigated. Measurements in isolated tissue were coupled with the determination of whole-body energy expenditure and insulin sensitivity. A significant increase in plasma NEFA, as well as in skeletal muscle TAG and ceramide, was found in fructose-fed rats compared with the controls, together with a significantly higher plasma insulin response to a glucose load, while no significant variation in plasma glucose levels was found. Significantly lower RMR values were found in fructose-fed rats starting from week 4 of the dietary treatment. Skeletal muscle mitochondrial mass and degree of coupling were found to be significantly higher in fructose-fed rats compared with the controls. Significantly higher lipid peroxidation was found in fructose-fed rats, together with a significant decrease in superoxide dismutase activity. Phosphorylated Akt levels normalised to plasma insulin levels were significantly lower in fructose-fed rats compared with the controls. In conclusion, a fructose-rich diet has a deep impact on a metabolically relevant tissue such as skeletal muscle. In this tissue, the consequences of high fructose feeding are altered glucose tolerance, elevated mitochondrial biogenesis and increased mitochondrial coupling. This latter modification could have a detrimental metabolic effect by causing oxidative stress and energy sparing that contribute to the high metabolic efficiency of fructose-fed rats.


Assuntos
Frutose/efeitos adversos , Intolerância à Glucose/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Acoplamento Oxidativo , Animais , Ceramidas/metabolismo , Metabolismo Energético , Ácidos Graxos não Esterificados/sangue , Intolerância à Glucose/sangue , Intolerância à Glucose/etiologia , Intolerância à Glucose/fisiopatologia , Hiperinsulinismo/etiologia , Resistência à Insulina , Peroxidação de Lipídeos , Masculino , Renovação Mitocondrial , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima
10.
Eur J Nutr ; 52(2): 537-45, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22543624

RESUMO

PURPOSE: To assess hepatic de novo lipogenesis and mitochondrial energetics as well as whole-body energy homeostasis in sedentary rats fed a fructose-rich diet. METHODS: Male rats of 90 days of age were fed a high-fructose or control diet for 8 weeks. Body composition, energy balance, oxygen consumption, carbon dioxide production, non-protein respiratory quotient, de novo lipogenesis and insulin resistance were measured. Determination of specific activity of hepatic enzymes of de novo lipogenesis, mitochondrial mass, oxidative capacity and degree of coupling, together with parameters of oxidative stress and antioxidant defence, was also carried out. RESULTS: Body energy and lipid content as well as plasma insulin and non-esterified fatty acids were significantly higher in fructose-fed than in control rats. Significantly higher rates of net de novo lipogenesis and activities of hepatic lipogenic enzymes fatty acid synthase and stearoyl CoA desaturase-1 were found in fructose-fed rats compared to controls. Mitochondrial protein mass and degree of coupling were significantly higher in fructose-fed rats compared to controls. Hepatic mitochondria showed oxidative damage, both in the lipid and in the protein component, together with decreased activity of antioxidant defence. CONCLUSION: Liver mitochondrial compartment is highly affected by fructose feeding. The increased mitochondrial efficiency allows liver cells to burn less substrates to produce ATP for de novo lipogenesis and gluconeogenesis. In addition, increased lipogenesis gives rise to whole body and ectopic lipid deposition, and higher mitochondrial coupling causes mitochondrial oxidative stress.


Assuntos
Frutose/administração & dosagem , Lipogênese , Fígado/metabolismo , Mitocôndrias/metabolismo , Obesidade/metabolismo , Aconitato Hidratase/metabolismo , Animais , Antioxidantes/metabolismo , Glicemia/análise , Composição Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos não Esterificados/sangue , Insulina/sangue , Resistência à Insulina , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Masculino , Proteínas Mitocondriais/metabolismo , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Estearoil-CoA Dessaturase/metabolismo , Superóxido Dismutase/metabolismo
11.
Antioxidants (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829857

RESUMO

The harmful effect of a long-term high-fructose diet is well established, but the age-dependent physiological responses that can be triggered by a short-term high-fructose diet in skeletal muscles have not been deeply explored. Therefore, the aim of this work was to compare the alterations in mitochondrial energetic and insulin responsiveness in the skeletal muscle induced by a short-term (2 weeks) fructose feeding in rats of different ages. For this purpose, fructose and uric acid levels, insulin sensitivity, mitochondrial bioenergetics and oxidative status were evaluated in the skeletal muscles from young (30 days old) and adult (90 days old) rats. We showed that, even in the short term, a high-fructose diet has a strong impact on skeletal muscle metabolism, with more marked effects in young rats than in adults ones. In fact, despite both groups showing a decrease in insulin sensitivity, the marked mitochondrial dysfunction was found only in the young rats, thus leading to an increase in the mitochondrial production of ROS, and therefore, in oxidative damage. These findings underscore the need to reduce fructose consumption, especially in young people, to preserve the maintenance of a metabolically healthy status.

12.
Front Nutr ; 10: 1236417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908302

RESUMO

Introduction: Microencapsulation of probiotic bacteria is an efficient and innovative new technique aimed at preserving bacterial survival in the hostile conditions of the gastrointestinal tract. However, understanding whether a microcapsule preserves the effectiveness of the bacterium contained within it is of fundamental importance. Methods: Male Wistar rats aged 90 days were fed a control diet or a Western diet for 8 weeks, with rats fed the Western diet divided into three groups: one receiving the diet only (W), the second group receiving the Western diet and free L. reuteri DSM 17938 (WR), and the third group receiving the Western diet and microencapsulated L. reuteri DSM 17938 (WRM). After 8 weeks of treatment, gut microbiota composition was evaluated, together with occludin, one of the tight junction proteins, in the ileum and the colon. Markers of inflammation were also quantified in the portal plasma, ileum, and colon, as well as markers for gut redox homeostasis. Results: The Western diet negatively influenced the intestinal microbiota, with no significant effect caused by supplementation with free and microencapsulated L. reuteri. However, L. reuteri, in both forms, effectively preserved the integrity of the intestinal barrier, thus protecting enterocytes from the development of inflammation and oxidative stress. Conclusion: From these whole data, it emerges that L. reuteri DSM 17938 can be an effective probiotic in preventing the unhealthy consequences of the Western diet, especially in the gut, and that microencapsulation preserves the probiotic effects, thus opening the formulation of new preparations to be able to improve gut function independent of dietary habits.

13.
J Nutr Biochem ; 113: 109247, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496062

RESUMO

To investigate whether short term fructose-rich diet induces changes in the gut microbiota as well as in skeletal muscle and adipose tissue physiology and verify whether they persist even after fructose withdrawal, young rats of 30 d of age were fed for 3 weeks a fructose-rich or control diet. At the end of the 3-weeks period, half of the rats from each group were maintained for further 3 weeks on a control diet. Metagenomic analysis of gut microbiota and short chain fatty acids levels (faeces and plasma) were investigated. Insulin response was evaluated at the whole-body level and both in skeletal muscle and epididymal adipose tissue, together with skeletal muscle mitochondrial function, oxidative stress, and lipid composition. In parallel, morphology and physiological status of epididymal adipose tissue was also evaluated. Reshaping of gut microbiota and increased content of short chain fatty acids was elicited by the fructose diet and abolished by switching back to control diet. On the other hand, most metabolic changes elicited by fructose-rich diet in skeletal muscle and epididymal adipose tissue persisted after switching to control diet. Increased dietary fructose intake even on a short-time basis elicits persistent changes in the physiology of metabolically relevant tissues, such as adipose tissue and skeletal muscle, through mechanisms that go well beyond the reshaping of gut microbiota. This picture delineates a harmful situation, in particular for the young populations, posed at risk of metabolic modifications that may persist in their adulthood.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Ratos , Animais , Frutose/efeitos adversos , Frutose/metabolismo , Dieta , Tecido Adiposo/metabolismo , Insulina/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo
14.
Br J Nutr ; 108(4): 655-65, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22085624

RESUMO

The present study investigated the effect of 2 weeks of energy restriction on whole body, liver and skeletal muscle energy handling. We measured whole-body oxygen consumption, as well as mitochondrial protein mass, respiratory capacity and energetic coupling in liver and skeletal muscle from food-restricted (FR) rats, age- and weight-matched controls. We also assessed markers of oxidative damage and antioxidant defences. The present results show that, in response to energy restriction, an adaptive decrease in whole-body energy expenditure is coupled with structural and functional changes in mitochondrial compartment, both in liver and skeletal muscle. In fact, liver mitochondrial mass per g of liver significantly increased, whereas total hepatic mitochondrial oxidative capacity was lower in FR than in control rats, because of a significant decrease in liver contribution to total body weight. In skeletal muscle, sub-sarcolemmal (SS) mitochondrial respiratory capacity, as well as SS and inter-myofibrillar (IMF) mitochondrial protein mass per g of tissue, was significantly lower in FR rats, compared to controls. Finally, a decrease in oxidative damage was found in liver but not in skeletal muscle mitochondria from FR rats, whereas an increase in antioxidant defence was found in both tissues. From the present results, it appears that skeletal muscle is involved in the decrease in energy expenditure induced by energy restriction. Energy sparing is achieved through changes in the activity (SS), mass (SS and IMF) and efficiency (IMF) of mitochondrial compartment.


Assuntos
Restrição Calórica , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Aconitato Hidratase/metabolismo , Animais , Restrição Calórica/efeitos adversos , Dióxido de Carbono/metabolismo , Citocromos c/metabolismo , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Peroxidação de Lipídeos , Fígado/anatomia & histologia , Fígado/enzimologia , Fígado/metabolismo , Masculino , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/enzimologia , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
15.
Nutrients ; 13(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921866

RESUMO

Persistence of damage induced by unhealthy diets during youth has been little addressed. Therefore, we investigated the impact of a short-term fructose-rich diet on liver metabolic activity in adolescent rats and the putative persistence of alterations after removing fructose from the diet. Adolescent rats were fed a fructose-rich diet for three weeks and then switched to a control diet for further three weeks. Body composition and energy balance were not affected by fructose-rich diet, while increased body lipids and lipid gain were found after the rescue period. Switching to a control diet reversed the upregulation of plasma fructose, uric acid, lipocalin, and haptoglobin, while plasma triglycerides, alanine aminotransferase, lipopolysaccharide, and tumor necrosis factor alpha remained higher. Hepatic steatosis and ceramide were increased by fructose-rich diet, but reversed by returning to a control diet, while altered hepatic response to insulin persisted. Liver fatty acid synthase and stearoyl-CoA desaturase (SCD) activities were upregulated by fructose-rich diet, and SCD activity remained higher after returning to the control diet. Fructose-induced upregulation of complex II-driven mitochondrial respiration, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, and peroxisome proliferator activated receptor α also persisted after switching to control diet. In conclusion, our results show prolonged fructose-induced dysregulation of liver metabolic activity.


Assuntos
Dieta da Carga de Carboidratos/efeitos adversos , Ingestão de Alimentos/fisiologia , Frutose/administração & dosagem , Resistência à Insulina/fisiologia , Mitocôndrias/metabolismo , Alanina Transaminase/sangue , Animais , Composição Corporal , Ceramidas/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Fígado Gorduroso/etiologia , Frutose/sangue , Haptoglobinas/metabolismo , Lipídeos/sangue , Lipocalinas/sangue , Lipopolissacarídeos/sangue , Fígado/metabolismo , Ratos , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue , Regulação para Cima/fisiologia , Ácido Úrico/sangue
16.
Food Funct ; 12(16): 7557-7568, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34286786

RESUMO

The link between increased fructose intake and induction of gut and liver dysfunction has been established, while it remains to be understood whether this damage is reversible, particularly in the young population, in which the intake of fructose has reached dramatic levels. To this end, young (30 days old) rats were fed a fructose-rich or control diet for 3 weeks to highlight the early response of the gut and liver to increased fructose intake. After this period, fructose-fed rats were returned to a control diet for 3 weeks and compared to the rats that received the control diet for the entire period to identify whether fructose-induced changes in the gut-liver axis persist or not after switching back to a control diet. Glucose transporter 5 and the tight junction protein occludin were assessed in the ileum and colon. Markers of inflammation and redox homeostasis as well as fructose and uric acid levels were also evaluated in the ileum, colon and liver. From the whole data, it is seen that metabolic derangement elicited by a fructose-rich diet, even after a brief period of intake, is fully reversed in the liver by a period of fructose withdrawal, while the alterations persist in the gut, especially in the ileum. In conclusion, given the increasing consumption of fructose-rich foods in young populations, the present results highlight the risk arising from gut persistent alterations even after the end of a fructose-rich diet. Therefore, dietary recommendations of reducing the intake of this simple sugar is mandatory to avoid not only the related metabolic alterations but also the persistence of these detrimental changes.


Assuntos
Dieta Saudável/métodos , Frutose/metabolismo , Trato Gastrointestinal/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Animais , Dieta/métodos , Modelos Animais de Doenças , Frutose/efeitos adversos , Frutose/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/fisiopatologia , Inflamação/etiologia , Inflamação/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Masculino , Ratos , Ratos Wistar
17.
Mol Nutr Food Res ; 64(16): e2000541, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32579784

RESUMO

SCOPE: Cholesterol homeostasis is crucial for brain functioning. Unhealthy nutrition can influence cerebral physiology, but the effect of western diets on brain cholesterol homeostasis, particularly at middle age, is unknown. Given the link between brain cholesterol alteration and beta amyloid production, the aim is to evaluate whether a diet rich in fat and fructose affects the protein network implicated in cholesterol synthesis and shuttling between glial cells and neurons, as well as crucial markers of beta amyloid metabolism. METHODS AND RESULTS: Middle aged rats are fed a high fat-high fructose (HFF) or a control diet for 4 weeks. Inflammatory markers and cholesterol levels significantly increase in hippocampus of HFF rats. A higher activation of 3-hydroxy 3-methylglutaryl coenzyme-A reductase, coupled with lower levels of apolipoprotein E, LXR-beta, and lipoproteins receptors is measured in hippocampus from HFF rats. The alteration of critical players of cholesterol homeostasis is associated with increased level of amyloid precursor protein, presenilin 1, and nicastrin, and decreased level of insulin degrading enzyme. CONCLUSIONS: Overall these data show that a western diet is associated with perturbation of cholesterol homeostasis in middle aged rats, mostly in hippocampus. This might trigger molecular events involved in the onset of neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Dieta Ocidental/efeitos adversos , Fatores Etários , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Apolipoproteínas E/metabolismo , Barreira Hematoencefálica/fisiologia , Encéfalo/fisiopatologia , Colesterol 24-Hidroxilase/metabolismo , Frutose/efeitos adversos , Homeostase , Hidroximetilglutaril-CoA Redutases/metabolismo , Receptores X do Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratos Sprague-Dawley , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
18.
Mol Neurobiol ; 56(11): 7651-7663, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31089964

RESUMO

Middle age is an early stage of the aging process, during which the consumption of diets rich in saturated fats and/or simple sugars might influence brain function, but only few data are available on this issue. We therefore investigated the impact of a diet rich in saturated fat and fructose (HFF) on mitochondrial physiology in hippocampus and frontal cortex of middle-aged rats (1 year old), by including a group of adult rats (90 days) as a "negative control," lacking the putative effect of aging. Middle-aged rats were fed HFF or control diet for 4 weeks. Mitochondrial function was analyzed by high-resolution respirometry and by assessing the amount of respiratory complexes. Markers of oxidative balance, as well as the protein content of uncoupling protein 2 (UCP2), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor alpha (PPARα), were also assessed. A decrease in the activity of complex I was detected in both brain areas of middle-aged rats. In hippocampus, mitochondrial respiratory capacity and complex IV content decreased with age and increased with HFF diet. Higher protein oxidative damage, decreased antioxidant defenses, and increased UCP2 and PGC-1α content were found in hippocampus of middle-aged rats. HFF feeding induced a significant reduction in the amount of UCP2, PGC-1α, and PPARα, together with higher protein oxidative damage, in both brain areas. Overall, our results point to middle age as a condition of early brain aging for mitochondrial function, with hippocampus being an area more susceptible to metabolic impairment than frontal cortex.


Assuntos
Envelhecimento/fisiologia , Encéfalo/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Mitocôndrias/metabolismo , Animais , Biomarcadores/metabolismo , Peso Corporal , Respiração Celular , Transporte de Elétrons , Comportamento Alimentar , Frutose , Masculino , Oxirredução , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Sprague-Dawley , Proteína Desacopladora 2/metabolismo
19.
Nutrients ; 11(11)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694213

RESUMO

To assess the effect of 4 weeks of high fat-high fructose feeding on whole body composition, energy balance, specific markers of oxidative stress and inflammation, and insulin sensitivity in the liver of middle-aged rats, rats (1 year) were fed a diet rich in saturated fatty acids and fructose (HFF rats), mimicking the "Western diet", and compared with rats of the same age that were fed a low fat diet (LF rats). HFF rats exhibited a significant increase in the gain of body weight, energy, and lipids compared to LF rats. HFF rats also showed hepatic insulin resistance, together with an increase in plasma triglycerides, cholesterol, and tumor necrosis factor alpha. Hepatic lipids, triglycerides and cholesterol were higher in HFF rats, while a significant decrease in Stearoyl-CoA desaturase activity was found in this tissue. A marked increase in the protein amount of complex I, concomitant to a decrease in its contribution to mitochondrial respiration, was found in HFF rats. Lipid peroxidation and Nitro-Tyrosine content, taken as markers of oxidative stress, as well as NADPH oxidase activity, were significantly higher in HFF rats, while the antioxidant enzyme catalase decreased in these rats. Myeloperoxidase activity and lipocalin content increased, while peroxisome proliferator activated receptor gamma decreased in HFF rats. The present results provide evidence that middle-aged rats show susceptibility to a short-term "Western diet", exhibiting altered redox homeostasis, insulin resistance, and early mitochondrial alterations in the liver. Therefore, this type of dietary habits should be drastically limited to pursue a "healthy aging".


Assuntos
Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Gorduras na Dieta/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Composição Corporal , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Dieta com Restrição de Gorduras/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/administração & dosagem , Frutose/administração & dosagem , Resistência à Insulina , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue
20.
Nutrients ; 11(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689911

RESUMO

Sweeteners have become integrating components of the typical western diet, in response to the spreading of sugar-related pathologies (diabetes, obesity and metabolic syndrome) that have stemmed from the adoption of unbalanced dietary habits. Sweet proteins are a relatively unstudied class of sweet compounds that could serve as innovative sweeteners, but their introduction on the food market has been delayed by some factors, among which is the lack of thorough metabolic and toxicological studies. We have tried to shed light on the potential of a sweet protein, MNEI, as a fructose substitute in beverages in a typical western diet, by studying the metabolic consequences of its consumption on a Wistar rat model of high fat diet-induced obesity. In particular, we investigated the lipid profile, insulin sensitivity and other indicators of metabolic syndrome. We also evaluated systemic inflammation and potential colon damage. MNEI consumption rescued the metabolic derangement elicited by the intake of fructose, namely insulin resistance, altered plasma lipid profile, colon inflammation and translocation of lipopolysaccharides from the gut lumen into the circulatory system. We concluded that MNEI could represent a valid alternative to fructose, particularly when concomitant metabolic disorders such as diabetes and/or glucose intolerance are present.


Assuntos
Composição Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Água Potável , Metabolismo Energético/efeitos dos fármacos , Proteínas/farmacologia , Edulcorantes/farmacologia , Animais , Biomarcadores/sangue , Colo/efeitos dos fármacos , Teste de Tolerância a Glucose , Inflamação , Lipídeos/sangue , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Projetos Piloto , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA