Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicology ; 221(2-3): 158-65, 2006 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-16442688

RESUMO

Potassium bromate (KBrO3) is a chemical oxidizing agent found in drinking water as a disinfection byproduct of surface water ozonation. Chronic exposures to KBrO3 cause renal cell tumors in rats, hamsters and mice and thyroid and testicular mesothelial tumors in rats. Experimental evidence indicates that bromate mediates toxicological effects via the induction of oxidative stress. To investigate the contribution of oxidative stress in KBrO3-induced cancer, male F344 rats were administered KBrO3 in their drinking water at multiple concentrations for 2-100 weeks. Gene expression analyses were performed on kidney, thyroid and mesothelial cell RNA. Families of mRNA transcripts differentially expressed with respect to bromate treatment included multiple cancer, cell death, ion transport and oxidative stress genes. Multiple glutathione metabolism genes were up-regulated in kidney following carcinogenic (400 mg/L) but not non-carcinogenic (20 mg/L) bromate exposures. 8-Oxodeoxyguanosine glycosylase (Ogg1) mRNA was up-regulated in response to bromate treatment in kidney but not thyroid. A dramatic decrease in global gene expression changes was observed following 1mg/L compared to 20 mg/L bromate exposures. In a separate study oxygen-18 (18O) labeled KBrO3 was administered to male rats by oral gavage and tissues were analyzed for 18O deposition. Tissue enrichment of 18O was observed at 5 and 24 h post-KBr18O3 exposure with the highest enrichment occurring in the liver followed by the kidney, thyroid and testes. The kidney dose response observed was biphasic showing similar statistical increases in 18O deposition between 0.25 and 50 mg/L (equivalent dose) KBr18O3 followed by a much greater increase above 50 mg/L. These results suggest that carcinogenic doses of potassium bromate require attainment of a threshold at which oxidation of tissues occurs and that gene expression profiles may be predictive of these physiological changes in renal homeostasis.


Assuntos
Biomarcadores Tumorais/genética , Bromatos/toxicidade , Carcinógenos/toxicidade , Expressão Gênica/efeitos dos fármacos , Neoplasias/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Epitélio/patologia , Perfilação da Expressão Gênica , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Neoplasias/metabolismo , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/genética , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos F344 , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA