Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 74(5): 711-717, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34791381

RESUMO

OBJECTIVES: To circumvent cisplatin (CDDP) toxic effects and improve the antitumoural effect, our research group developed long-circulating and pH-sensitive liposomes containing CDDP (SpHL-CDDP). This study aimed to evaluate whether SpHL-CDDP is associated with intestinal protection under in-vitro conditions in the presence of host-microbiota, compared with free CDDP. METHODS: The cytotoxicity of CDDP and SpHL-CDDP were evaluated by colorimetric MTT and sulforhodamine B (SRB) assays. Epithelial proliferation was assessed by using an in-vitro wounding model in the presence of host-microbiota with intestinal epithelial cell line 6 (IEC-6) monolayers. Cytokines were determined by ELISA. KEY FINDINGS: Reduced cytotoxicity of SpHL-CDDP in IEC-6 cells (minimum of 1.3-fold according to the IC50 values) was observed when compared with CDDP. The presence of microbiota or CDDP reduced the wound healing. The association of microbiota and SpHL-CDDP improved the wound healing and cell number in IEC-6 cells when compared with control. These beneficial results can be associated with increased IL-6 and IL-10 levels induced by SpHL-CDDP which were affected by the presence of microbiota. CONCLUSIONS: These results indicate that the presence of microbiota associated with SpHL-CDDP provided less intestinal cellular damages compared with CDDP and constitutes a promising candidate for clinical use.


Assuntos
Antineoplásicos , Microbiota , Antineoplásicos/farmacologia , Contagem de Células , Linhagem Celular Tumoral , Cisplatino/farmacologia , Células Epiteliais , Concentração de Íons de Hidrogênio , Lipossomos , Cicatrização
2.
Biomed Res Int ; 2013: 467147, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23984367

RESUMO

Cancer is one of the leading causes of death worldwide. Although several drugs are used clinically, some tumors either do not respond or are resistant to the existing pharmacotherapy, thus justifying the search for new drugs. Ursolic acid (UA) is a triterpene found in different plant species that has been shown to possess significant antitumor activity. However, UA presents a low solubility in aqueous medium, which presents a barrier to its biological applications. In this context, the use of liposomes presents a promising strategy to deliver UA and allow for its intravenous administration. In this work, long-circulating and pH-sensitive liposomes containing UA (SpHL-UA) were developed, and their chemical and physicochemical properties were evaluated. SpHL-UA presented adequate properties, including a mean diameter of 191.1 ± 6.4 nm, a zeta potential of 1.2 ± 1.4 mV, and a UA entrapment of 0.77 ± 0.01 mg/mL. Moreover, this formulation showed a good stability after having been stored for 2 months at 4 °C. The viability studies on breast (MDA-MB-231) and prostate (LNCaP) cancer cell lines demonstrated that SpHL-UA treatment significantly inhibited cancer cell proliferation. Therefore, the results of the present work suggest the applicability of SpHL-UA as a new and promising anticancer formulation.


Assuntos
Fenômenos Químicos , Portadores de Fármacos/química , Lipossomos/química , Triterpenos/química , Triterpenos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Concentração Inibidora 50 , Lipossomos/ultraestrutura , Masculino , Tamanho da Partícula , Ácido Ursólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA