Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070766

RESUMO

PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of Caenorhabditis elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we previously proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1-PUF and SYGL-1-PUF partnerships and their molecular activities in their natural context - nematode stem cells. We confirm LST-1-PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(AmBm) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(AmBm) is used to explore the in vivo functional significance of the LST-1-PUF partnership. Tethered LST-1 requires this partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs in vivo. Comparison of LST-1-PUF and Nanos-Pumilio reveals fundamental molecular differences, making LST-1-PUF a distinct paradigm for PUF partnerships.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , RNA/metabolismo , Células-Tronco/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(39): e2309964120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37729202

RESUMO

Notch signaling regulates stem cells across animal phylogeny. C. elegans Notch signaling activates transcription of two genes, lst-1 and sygl-1, that encode potent regulators of germline stem cells. The LST-1 protein regulates stem cells in two distinct ways: It promotes self-renewal posttranscriptionally and also restricts self-renewal by a poorly understood mechanism. Its self-renewal promoting activity resides in its N-terminal region, while its self-renewal restricting activity resides in its C-terminal region and requires the Zn finger. Here, we report that LST-1 limits self-renewal by down-regulating Notch-dependent transcription. We detect LST-1 in the nucleus, in addition to its previously known cytoplasmic localization. LST-1 lowers nascent transcript levels at both lst-1 and sygl-1 loci but not at let-858, a Notch-independent locus. LST-1 also lowers levels of two key components of the Notch activation complex, the LAG-1 DNA binding protein and Notch intracellular domain (NICD). Genetically, an LST-1 Zn finger mutant increases Notch signaling strength in both gain- and loss-of-function GLP-1/Notch receptor mutants. Biochemically, LST-1 co-immunoprecipitates with LAG-1 from nematode extracts, suggesting a direct effect. LST-1 is thus a bifunctional regulator that coordinates posttranscriptional and transcriptional mechanisms in a single protein. This LST-1 bifunctionality relies on its bipartite protein architecture and is bolstered by generation of two LST-1 isoforms, one specialized for Notch downregulation. A conserved theme from worms to human is the coupling of PUF-mediated RNA repression together with Notch feedback in the same protein.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/genética , Citoplasma , Citosol , Proteínas de Ligação a DNA , Células Germinativas , Receptor do Peptídeo Semelhante ao Glucagon 1 , Proteínas de Caenorhabditis elegans/genética
3.
RNA ; 22(7): 1026-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27165521

RESUMO

PUF (Pumilio/FBF) proteins are RNA-binding proteins and conserved stem cell regulators. The Caenorhabditis elegans PUF proteins FBF-1 and FBF-2 (collectively FBF) regulate mRNAs in germ cells. Without FBF, adult germlines lose all stem cells. A major gap in our understanding of PUF proteins, including FBF, is a global view of their binding sites in their native context (i.e., their "binding landscape"). To understand the interactions underlying FBF function, we used iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to determine binding landscapes of C. elegans FBF-1 and FBF-2 in the germline tissue of intact animals. Multiple iCLIP peak-calling methods were compared to maximize identification of both established FBF binding sites and positive control target mRNAs in our iCLIP data. We discovered that FBF-1 and FBF-2 bind to RNAs through canonical as well as alternate motifs. We also analyzed crosslinking-induced mutations to map binding sites precisely and to identify key nucleotides that may be critical for FBF-RNA interactions. FBF-1 and FBF-2 can bind sites in the 5'UTR, coding region, or 3'UTR, but have a strong bias for the 3' end of transcripts. FBF-1 and FBF-2 have strongly overlapping target profiles, including mRNAs and noncoding RNAs. From a statistically robust list of 1404 common FBF targets, 847 were previously unknown, 154 were related to cell cycle regulation, three were lincRNAs, and 335 were shared with the human PUF protein PUM2.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
4.
Dev Cell ; 59(5): 661-675.e7, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38290520

RESUMO

Protein-RNA regulatory networks underpin much of biology. C. elegans FBF-2, a PUF-RNA-binding protein, binds over 1,000 RNAs to govern stem cells and differentiation. FBF-2 interacts with multiple protein partners via a key tyrosine, Y479. Here, we investigate the in vivo significance of partnerships using a Y479A mutant. Occupancy of the Y479A mutant protein increases or decreases at specific sites across the transcriptome, varying with RNAs. Germline development also changes in a specific fashion: Y479A abolishes one FBF-2 function-the sperm-to-oocyte cell fate switch. Y479A's effects on the regulation of one mRNA, gld-1, are critical to this fate change, though other network changes are also important. FBF-2 switches from repression to activation of gld-1 RNA, likely by distinct FBF-2 partnerships. The role of RNA-binding protein partnerships in governing RNA regulatory networks will likely extend broadly, as such partnerships pervade RNA controls in virtually all metazoan tissues and species.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Masculino , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sêmen/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
5.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915480

RESUMO

PUF RNA-binding proteins are broadly conserved stem cell regulators. Nematode PUF proteins maintain germline stem cells (GSCs) and, with key partner proteins, repress differentiation mRNAs, including gld-1. Here we report that PUF protein FBF-2 and its partner LST-1 form a ternary complex that represses gld-1 via a pair of adjacent FBF-2 binding elements (FBEs) in its 3ÚTR. One LST-1 molecule links two FBF-2 molecules via motifs in the LST-1 intrinsically-disordered region; the gld-1 FBE pair includes a well-established 'canonical' FBE and a newly-identified noncanonical FBE. Remarkably, this FBE pair drives both full RNA repression in GSCs and full RNA activation upon differentiation. Discovery of the LST-1-FBF-2 ternary complex, the gld-1 adjacent FBEs, and their in vivo significance predicts an expanded regulatory repertoire of different assemblies of PUF-partner complexes in nematode germline stem cells. It also suggests analogous PUF controls may await discovery in other biological contexts and organisms.

6.
Adv Exp Med Biol ; 786: 29-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696350

RESUMO

C. elegans germline stem cells exist within a stem cell pool that is maintained by a single-celled mesenchymal niche and Notch signaling. Downstream of Notch signaling, a regulatory network governs stem cells and differentiation. Central to that network is the FBF RNA-binding protein, a member of the widely conserved PUF family that functions by either of two broadly conserved mechanisms to repress its target mRNAs. Without FBF, germline stem cells do not proliferate and they do not maintain their naïve, undifferentiated state. Therefore, FBF is a pivotal regulator of germline self-renewal. Validated FBF targets include several key differentiation regulators as well as a major cell cycle regulator. A genomic analysis identifies many other developmental and cell cycle regulators as likely FBF targets and suggests that FBF is a broad-spectrum regulator of the genome with >1,000 targets. A comparison of the FBF target list with similar lists for human PUF proteins, PUM1 and PUM2, reveals ∼200 shared targets. The FBF hub works within a network controlling self-renewal vs. differentiation. This network consists of classical developmental cell fate regulators and classical cell cycle regulators. Recent results have begun to integrate developmental and cell cycle regulation within the network. The molecular dynamics of the network remain a challenge for the future, but models are proposed. We suggest that molecular controls of C. elegans germline stem cells provide an important model for controls of stem cells more broadly.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Proteínas de Ligação a RNA/genética , Células-Tronco/metabolismo , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular/genética , Diferenciação Celular , Proliferação de Células , Redes Reguladoras de Genes , Células Germinativas/citologia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Nicho de Células-Tronco/genética , Células-Tronco/citologia
7.
Proc Natl Acad Sci U S A ; 107(5): 2048-53, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20080700

RESUMO

Controls of stem cell maintenance and early differentiation are known in several systems. However, the progression from stem cell self-renewal to overt signs of early differentiation is a poorly understood but important problem in stem cell biology. The Caenorhabditis elegans germ line provides a genetically defined model for studying that progression. In this system, a single-celled mesenchymal niche, the distal tip cell (DTC), employs GLP-1/Notch signaling and an RNA regulatory network to balance self-renewal and early differentiation within the "mitotic region," which continuously self-renews while generating new gametes. Here, we investigate germ cells in the mitotic region for their capacity to differentiate and their state of maturation. Two distinct pools emerge. The "distal pool" is maintained by the DTC in an essentially uniform and immature or "stem cell-like" state; the "proximal pool," by contrast, contains cells that are maturing toward early differentiation and are likely transit-amplifying cells. A rough estimate of pool sizes is 30-70 germ cells in the distal immature pool and approximately 150 in the proximal transit-amplifying pool. We present a simple model for how the network underlying the switch between self-renewal and early differentiation may be acting in these two pools. According to our model, the self-renewal mode of the network maintains the distal pool in an immature state, whereas the transition between self-renewal and early differentiation modes of the network underlies the graded maturation of germ cells in the proximal pool. We discuss implications of this model for controls of stem cells more broadly.


Assuntos
Caenorhabditis elegans/citologia , Células Germinativas/citologia , Animais , Subunidade Apc4 do Ciclossomo-Complexo Promotor de Anáfase , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Feminino , Células Germinativas/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mitose , Modelos Biológicos , Mutação , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Temperatura
8.
Methods Mol Biol ; 2677: 1-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37464233

RESUMO

The Caenorhabditis elegans germline is an excellent model for studying the genetic and molecular regulation of stem cell self-renewal and progression of cells from a stem cell state to a differentiated state. The germline tissue is organized in an assembly line with the germline stem cell (GSC) pool at one end and differentiated gametes at the other. A simple mesenchymal niche caps the GSC pool and maintains GSCs in an undifferentiated state by signaling through the conserved Notch pathway. Notch signaling activates transcription of the key GSC regulators lst-1 and sygl-1 proteins in a gradient through the GSC pool. LST-1 and SYGL-1 proteins work with PUF RNA regulators in a self-renewal hub to maintain the GSC pool. In this chapter, we present methods for characterizing the C. elegans GSC pool and early stages of germ cell differentiation. The methods include examination of germlines in living and fixed worms, cell cycle analysis, and analysis of markers. We also discuss assays to separate mutant phenotypes that affect the stem cell vs. differentiation decision from those that affect germ cell processes more generally.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células-Tronco , Autorrenovação Celular , Diferenciação Celular/fisiologia , Células Germinativas/metabolismo
9.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824876

RESUMO

PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of C. elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1-PUF and SYGL-1-PUF partnerships and their molecular activities in their natural context - nematode stem cells. We confirm LST-1-PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(A m B m ) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(A m B m ) is used to explore the functional significance of the LST-1-PUF partnership. Tethered LST-1 requires the partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs. Comparison of PUF-LST-1 and Pumilio-Nanos reveals fundamental molecular differences, making PUF-LST-1 a distinct paradigm for PUF partnerships. Summary statement: Partnerships between PUF RNA-binding proteins and intrinsically disordered proteins are essential for stem cell maintenance and RNA repression.

10.
Methods Mol Biol ; 2472: 131-149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674897

RESUMO

Notch signaling is crucial to animal development and homeostasis. Notch triggers the transcription of its target genes, which produce diverse outcomes depending on context. The high resolution and spatially precise assessment of Notch-dependent transcription is essential for understanding how Notch operates normally in its native context in vivo and how Notch defects lead to pathogenesis. Here we present biological and computational methods to assess Notch-dependent transcriptional activation in stem cells within their niche, focusing on germline stem cells in the nematode Caenorhabditis elegans. Specifically, we describe visualization of single RNAs in fixed gonads using single-molecule RNA fluorescence in situ hybridization (smFISH), live imaging of transcriptional bursting in the intact organism using the MS2 system, and custom-made MATLAB codes, implementing new image processing algorithms to capture the spatiotemporal patterns of Notch-dependent transcriptional activation. These methods allow a powerful analysis of in vivo transcriptional activation and its dynamics in a whole tissue. Our methods can be adapted to essentially any tissue or cell type for any transcript.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Hibridização in Situ Fluorescente/métodos , RNA/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo
11.
Dev Biol ; 346(2): 204-14, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20659446

RESUMO

The hermaphrodite Caenorhabditis elegans germline has become a classic model for stem cell regulation, but the male C. elegans germline has been largely neglected. This work provides a cellular analysis of the adult C. elegans male germline, focusing on its predicted stem cell region in the distal gonad. The goals of this study were two-fold: to establish the C. elegans male germline as a stem cell model and to identify sex-specific traits of potential relevance to the sperm/oocyte decision. Our results support two major conclusions. First, adult males do indeed possess a population of germline stem cells (GSCs) with properties similar to those of hermaphrodite GSCs (lack of cell cycle quiescence and lack of reproducibly oriented divisions). Second, germ cells in the mitotic region, including those most distal within the niche, exhibit sex-specific behaviors (e.g. cell cycle length) and therefore have acquired sexual identity. Previous studies demonstrated that some germ cells are not committed to a sperm or oocyte cell fate, even in adults. We propose that germ cells can acquire sexual identity without being committed to a sperm or oocyte cell fate.


Assuntos
Caenorhabditis elegans/embriologia , Células Germinativas/citologia , Células-Tronco/citologia , Animais , Caenorhabditis elegans/metabolismo , Ciclo Celular , Diferenciação Celular , Divisão Celular , Embrião não Mamífero/metabolismo , Células Germinativas/metabolismo , Masculino , Oócitos/metabolismo , Caracteres Sexuais , Células-Tronco/metabolismo
12.
Nat Commun ; 12(1): 996, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579952

RESUMO

Cytoplasmic RNA-protein (RNP) granules have diverse biophysical properties, from liquid to solid, and play enigmatic roles in RNA metabolism. Nematode P granules are paradigmatic liquid droplet granules and central to germ cell development. Here we analyze a key P granule scaffolding protein, PGL-1, to investigate the functional relationship between P granule assembly and function. Using a protein-RNA tethering assay, we find that reporter mRNA expression is repressed when recruited to PGL-1. We determine the crystal structure of the PGL-1 N-terminal region to 1.5 Å, discover its dimerization, and identify key residues at the dimer interface. Mutations of those interface residues prevent P granule assembly in vivo, de-repress PGL-1 tethered mRNA, and reduce fertility. Therefore, PGL-1 dimerization lies at the heart of both P granule assembly and function. Finally, we identify the P granule-associated Argonaute WAGO-1 as crucial for repression of PGL-1 tethered mRNA. We conclude that P granule function requires both assembly and localized regulators.


Assuntos
Caenorhabditis elegans/genética , Grânulos Citoplasmáticos/metabolismo , Células Germinativas/metabolismo , RNA Mensageiro/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Repressão Epigenética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Conformação Proteica , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Genetics ; 181(4): 1249-60, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19221201

RESUMO

FBF, a PUF RNA-binding protein, is a key regulator of the mitosis/meiosis decision in the Caenorhabditis elegans germline. Genetically, FBF has a dual role in this decision: it maintains germ cells in mitosis, but it also facilitates entry into meiosis. In this article, we explore the molecular basis of that dual role. Previous work showed that FBF downregulates gld-1 expression to promote mitosis and that the GLD-2 poly(A) polymerase upregulates gld-1 expression to reinforce the decision to enter meiosis. Here we ask whether FBF can act as both a negative regulator and a positive regulator of gld-1 expression and also investigate its molecular mechanisms of control. We first show that FBF co-immunoprecipitates with gld-1 mRNA, a result that complements previous evidence that FBF directly controls gld-1 mRNA. Then we show that FBF represses gld-1 expression, that FBF physically interacts with the CCF-1/Pop2p deadenylase and can stimulate deadenylation in vitro, and that CCF-1 is partially responsible for maintaining low GLD-1 in the mitotic region. Finally, we show that FBF can elevate gld-1 expression, that FBF physically interacts with the GLD-2 poly(A) polymerase, and that FBF can enhance GLD-2 poly(A) polymerase activity in vitro. We propose that FBF can affect polyadenylation either negatively by its CCF-1 interaction or positively by its GLD-2 interaction.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Proteínas de Ligação a RNA/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Exorribonucleases/metabolismo , Exorribonucleases/fisiologia , Feminino , Regulação da Expressão Gênica , Masculino , Modelos Biológicos , Dados de Sequência Molecular , Oogênese/genética , Polinucleotídeo Adenililtransferase/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos , Espermatogênese/genética
14.
Dev Cell ; 7(5): 697-707, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15525531

RESUMO

In the C. elegans germline, GLP-1/Notch signaling and two nearly identical RNA binding proteins, FBF-1 and FBF-2, promote proliferation. Here, we show that the fbf-1 and fbf-2 genes are largely redundant for promoting mitosis but that they have opposite roles in fine-tuning the size of the mitotic region. The mitotic region is smaller than normal in fbf-1 mutants but larger than normal in fbf-2 mutants. Consistent with gene-specific roles, fbf-2 expression is limited to the distal germline, while fbf-1 expression is broader. The fbf-2 gene, but apparently not fbf-1, is controlled by GLP-1/Notch signaling, and the abundance of FBF-1 and FBF-2 proteins is limited by reciprocal 3'UTR repression. We propose that the divergent fbf genes and their regulatory subnetwork enable a precise control over size of the mitotic region. Therefore, fbf-1 and fbf-2 provide a paradigm for how recently duplicated genes can diverge to fine-tune patterning during animal development.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/fisiologia , Proteínas de Helminto/fisiologia , Mitose/fisiologia , Proteínas de Ligação a RNA/fisiologia , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Western Blotting , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/citologia , Proteínas de Helminto/genética , Homozigoto , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Ligação a RNA/genética , Deleção de Sequência
15.
Mol Biol Cell ; 17(7): 3051-61, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16672375

RESUMO

The Caenorhabditis elegans germ line provides a model for understanding how signaling from a stem cell niche promotes continued mitotic divisions at the expense of differentiation. Here we report cellular analyses designed to identify germline stem cells within the germline mitotic region of adult hermaphrodites. Our results support several conclusions. First, all germ cells within the mitotic region are actively cycling, as visualized by bromodeoxyuridine (BrdU) labeling. No quiescent cells were found. Second, germ cells in the mitotic region lose BrdU label uniformly, either by movement of labeled cells into the meiotic region or by dilution, probably due to replication. No label-retaining cells were found in the mitotic region. Third, the distal tip cell niche extends processes that nearly encircle adjacent germ cells, a phenomenon that is likely to anchor the distal-most germ cells within the niche. Fourth, germline mitoses are not oriented reproducibly, even within the immediate confines of the niche. We propose that germ cells in the distal-most rows of the mitotic region serve as stem cells and more proximal germ cells embark on the path to differentiation. We also propose that C. elegans adult germline stem cells are maintained by proximity to the niche rather than by programmed asymmetric divisions.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Diferenciação Celular , Células Germinativas/citologia , Meiose , Mitose , Animais , Bromodesoxiuridina/química , Contagem de Células , Ciclo Celular , Divisão Celular , Fase S , Células-Tronco/citologia
16.
Mol Biol Cell ; 30(14): 1757-1769, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067147

RESUMO

Stem cell maintenance by niche signaling is a common theme across phylogeny. In the Caenorhabditis elegans gonad, the broad outlines of germline stem cell (GSC) regulation are the same for both sexes: GLP-1/Notch signaling from the mesenchymal distal tip cell niche maintains GSCs in the distal gonad of both sexes and does so via two key stem cell regulators, SYGL-1 and LST-1. Yet most recent analyses of niche signaling and GSC regulation have focused on XX hermaphrodites, an essentially female sex making sperm in larvae and oocytes in adults. Here we focus on GSC regulation in XO males. Sexual dimorphism of niche architecture, reported previously, suggested that the molecular responses to niche signaling or numbers of GSCs might also be sexually distinct. Remarkably, this is not the case. This work extends our understanding of the sexually dimorphic niche architecture, but also demonstrates that the dimorphic niches drive a similar molecular response and maintain a similar number of GSCs in their stem cell pools.


Assuntos
Caenorhabditis elegans/citologia , Células Germinativas/citologia , Caracteres Sexuais , Células-Tronco/citologia , Animais , Padronização Corporal , Proteínas de Caenorhabditis elegans/genética , Feminino , Gônadas/metabolismo , Masculino , Modelos Biológicos , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Methods Mol Biol ; 450: 27-44, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18370049

RESUMO

We present methods for characterizing the mitotic and early meiotic regions of the Caenorhabditis elegans germline. The methods include examination of germlines in living and fixed worms, cell cycle analysis, analysis of markers, and initial characterization of mutants that affect germline proliferation.


Assuntos
Células-Tronco Adultas/citologia , Caenorhabditis elegans/citologia , Células Germinativas/citologia , Células-Tronco Adultas/metabolismo , Animais , Apoptose , Biomarcadores/metabolismo , Bromodesoxiuridina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Ciclo Celular , Proliferação de Células , Feminino , Células Germinativas/metabolismo , Masculino , Meiose , Microscopia de Interferência , Mitose , Índice Mitótico , Biologia Molecular/métodos , Mutação
18.
Methods Mol Biol ; 1463: 1-33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27734344

RESUMO

The Caenorhabditis elegans germline is an excellent model for studying the regulation of a pool of stem cells and progression of cells from a stem cell state to a differentiated state. At the tissue level, the germline is organized in an assembly line with the germline stem cell (GSC) pool at one end and differentiated cells at the other. A simple mesenchymal niche caps the GSC region of the germline and maintains GSCs in an undifferentiated state by signaling through the conserved Notch pathway. Downstream of Notch signaling, key regulators include novel LST-1 and SYGL-1 proteins and a network of RNA regulatory proteins. In this chapter we present methods for characterizing the C. elegans GSC pool and early germ cell differentiation. The methods include examination of the germline in living and fixed worms, cell cycle analysis, and analysis of markers. We also discuss assays to separate mutants that affect the stem cell vs. differentiation decision from those that affect germ cell processes more generally.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Células Germinativas/citologia , Células-Tronco/citologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Células Germinativas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
19.
Bio Protoc ; 7(12): e2357, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541104

RESUMO

Single-molecule RNA fluorescence in situ hybridization (smFISH) is a technique to visualize individual RNA molecules using multiple fluorescently-labeled oligonucleotide probes specific to the target RNA ( Raj et al., 2008 ; Lee et al., 2016a ). We adapted this technique to visualize RNAs in the C. elegans whole adult worm or its germline, which enabled simultaneous recording of nascent transcripts at active transcription sites and mature mRNAs in the cytoplasm ( Lee et al., 2013 and 2016b). Here we describe each step of the smFISH procedure, reagents, and microscope settings optimized for C. elegans extruded gonads.

20.
Genetics ; 168(1): 147-60, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15454534

RESUMO

Germ cells can divide mitotically to replenish germline tissue or meiotically to produce gametes. In this article, we report that GLD-3, a Caenorhabditis elegans Bicaudal-C homolog, promotes the transition from mitosis to meiosis together with the GLD-2 poly(A) polymerase. GLD-3 binds GLD-2 via a small N-terminal region present in both GLD-3S and GLD-3L isoforms, and GLD-2 and GLD-3 can be co-immunoprecipitated from worm extracts. The FBF repressor binds specifically to elements in the gld-3S 3'-UTR, and FBF regulates gld-3 expression. Furthermore, FBF acts largely upstream of gld-3 in the mitosis/meiosis decision. By contrast, GLD-3 acts upstream of FBF in the sperm/oocyte decision, and GLD-3 protein can antagonize FBF binding to RNA regulatory elements. To address the relative importance of these two regulatory mechanisms in the mitosis/meiosis and sperm/oocyte decisions, we isolated a deletion mutant, gld-3(q741), that removes the FBF-binding site from GLD-3L, but leaves the GLD-2-binding site intact. Animals homozygous for gld-3(q741) enter meiosis, but are feminized. Therefore, GLD-3 promotes meiosis primarily via its interaction with GLD-2, and it promotes spermatogenesis primarily via its interaction with FBF.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Ciclo Celular/fisiologia , Regulação da Expressão Gênica , Células Germinativas/fisiologia , Proteínas de Ligação a RNA/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular/genética , Ensaio de Desvio de Mobilidade Eletroforética , Componentes do Gene , Imuno-Histoquímica , Imunoprecipitação , Dados de Sequência Molecular , Mutação/genética , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , Polinucleotídeo Adenililtransferase/fisiologia , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA