Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nature ; 594(7861): 62-65, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079138

RESUMO

Our understanding of the dielectric response of interfacial water, which underlies the solvation properties and reaction rates at aqueous interfaces, relies on the linear response approximation: an external electric field induces a linearly proportional polarization. This implies antisymmetry with respect to the sign of the field. Atomistic simulations have suggested, however, that the polarization of interfacial water may deviate considerably from the linear response. Here we present an experimental study addressing this issue. We measured vibrational sum-frequency generation spectra of heavy water (D2O) near a monolayer graphene electrode, to study its response to an external electric field under controlled electrochemical conditions. The spectra of the OD stretch show a pronounced asymmetry for positive versus negative electrode charge. At negative charge below 5 × 1012 electrons per square centimetre, a peak of the non-hydrogen-bonded OD groups pointing towards the graphene surface is observed at a frequency of 2,700 per centimetre. At neutral or positive electrode potentials, this 'free-OD' peak disappears abruptly, and the spectra display broad peaks of hydrogen-bonded OD species (at 2,300-2,650 per centimetre). Miller's rule1 connects the vibrational sum-frequency generation response to the dielectric constant. The observed deviation from the linear response for electric fields of about ±3 × 108 volts per metre calls into question the validity of treating interfacial water as a simple dielectric medium.

2.
J Am Chem Soc ; 145(5): 2860-2869, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715560

RESUMO

Photoelectrochemical solar fuel generation at the semiconductor/liquid interface consists of multiple elementary steps, including charge separation, recombination, and catalytic reactions. While the overall incident light-to-current conversion efficiency (IPCE) can be readily measured, identifying the microscopic efficiency loss processes remains difficult. Here, we report simultaneous in situ transient photocurrent and transient reflectance spectroscopy (TRS) measurements of titanium dioxide-protected gallium phosphide photocathodes for water reduction in photoelectrochemical cells. Transient reflectance spectroscopy enables the direct probe of the separated charge carriers responsible for water reduction to follow their kinetics. Comparison with transient photocurrent measurement allows the direct probe of the initial charge separation quantum efficiency (ϕCS) and provides support for a transient photocurrent model that divides IPCE into the product of quantum efficiencies of light absorption (ϕabs), charge separation (ϕCS), and photoreduction (ϕred), i.e., IPCE = ϕabsϕCSϕred. Our study shows that there are two general key loss pathways: recombination within the bulk GaP that reduces ϕCS and interfacial recombination at the junction that decreases ϕred. Although both loss pathways can be reduced at a more negative applied bias, for GaP/TiO2, the initial charge separation loss is the key efficiency limiting factor. Our combined transient reflectance and photocurrent study provides a time-resolved view of microscopic steps involved in the overall light-to-current conversion process and provides detailed insights into the main loss pathways of the photoelectrochemical system.

3.
Langmuir ; 39(47): 16807-16811, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37956213

RESUMO

We report spectroscopic measurements of the local pH and pKa at an electrode/electrolyte interface using surface enhanced Raman scattering (SERS) spectroscopy of 4-mercaptobenzoic acid (4-MBA). In acidic and basic solutions, the protonated and deprotonated carboxyl functional groups at the electrode surface exist in the solution as -COOH and -COO-, which have different Raman active vibrational features at around 1697 and 1414 cm-1, respectively. In pH neutral water, as the applied electrochemical potential is varied from negative to positive, the acidic form of the 4-MBA (i.e., -COOH) decreases in Raman intensity and the basic form (i.e., -COO-) increases in Raman intensity. The change in local ion concentration is due to the application of electrochemical potentials and the accumulation of ions near the electrode surface. Under various applied potentials, the ratio of 1697 and 1587 cm-1 (pH-independent) peak areas spans the range between 0.7 and 0, and the ratio of the 1414 and 1587 cm-1 peak areas ranges from 0 to 0.3. By fitting these data to a normalized sigmoid function, we obtain the percentage of surface protonation/deprotonation, which can be related to the pKa and pH of the system. Thus, we can measure the local pKa at the electrode surface using the surface enhanced Raman signal of the 4-MBA.

4.
J Am Chem Soc ; 144(8): 3517-3526, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35188777

RESUMO

Understanding the relaxation and injection dynamics of hot electrons is crucial to utilizing them in photocatalytic applications. While most studies have focused on hot carrier dynamics at metal/semiconductor interfaces, we study the in situ dynamics of direct hot electron injection from metal to adsorbates. Here, we report a hot electron-driven hydrogen evolution reaction (HER) by exciting the localized surface plasmon resonance (LSPR) in Au grating photoelectrodes. In situ ultrafast transient absorption (TA) measurements show a depletion peak resulting from hot electrons. When the sample is immersed in solution under -1 V applied potential, the extracted electron-phonon interaction time decreases from 0.94 to 0.67 ps because of additional energy dissipation channels. The LSPR TA signal is redshifted with delay time because of charge transfer and subsequent change in the dielectric constant of nearby solution. Plateau-like photocurrent peaks appear when exciting a 266 nm linewidth grating with p-polarized (on resonance) light, accompanied by a similar profile in the measured absorptance. Double peaks in the photocurrent measurement are observed when irradiating a 300 nm linewidth grating. The enhancement factor (i.e., reaction rate) is 15.6× between p-polarized and s-polarized light for the 300 nm linewidth grating and 4.4× for the 266 nm linewidth grating. Finite-difference time domain (FDTD) simulations show two resonant modes for both grating structures, corresponding to dipolar LSPR modes at the metal/fused silica and metal/water interfaces. To our knowledge, this is the first work in which LSPR-induced hot electron-driven photochemistry and in situ photoexcited carrier dynamics are studied on the same plasmon resonance structure with and without adsorbates.

5.
Opt Lett ; 47(23): 6225-6228, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219212

RESUMO

We demonstrate a free-space optical communication link with an optical transmitter that harvests naturally occurring Planck radiation from a warm body and modulates the emitted intensity. The transmitter exploits an electro-thermo-optic effect in a multilayer graphene device that electrically controls the surface emissivity of the device resulting in control of the intensity of the emitted Planck radiation. We design an amplitude-modulated optical communication scheme and provide a link budget for communications data rate and range based on our experimental electro-optic characterization of the transmitter. Finally, we present an experimental demonstration achieving error-free communications at 100 bits per second over laboratory scales.

6.
Nano Lett ; 21(19): 8017-8024, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34569798

RESUMO

Nanoscale oxide layer protected semiconductor photoelectrodes show enhanced stability and performance for solar fuels generation, although the mechanism for the performance enhancement remains unclear due to a lack of understanding of the microscopic interfacial field and its effects. Here, we directly probe the interfacial fields at p-GaP electrodes protected by n-TiO2 and its effect on charge carriers by transient reflectance spectroscopy. Increasing the TiO2 layer thickness from 0 to 35 nm increases the field in the GaP depletion region, enhancing the rate and efficiency of interfacial electron transfer from the GaP to TiO2 on the ps time scale as well as retarding interfacial recombination on the microsecond time scale. This study demonstrates a general method for providing a microscopic view of the photogenerated charge carrier's pathway and loss mechanisms from the bulk of the electrode to the long-lived separated charge at the interface that ultimately drives the photoelectrochemical reactions.


Assuntos
Óxidos , Titânio , Eletrodos , Luz Solar
7.
Anal Chem ; 93(16): 6421-6427, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33855854

RESUMO

In situ surface-enhanced Raman scattering (SERS) spectroscopy is used to identify the key reaction intermediates during the plasma-based removal of NO and SO2 under dry and wet conditions on Ag nanoparticles. Density functional theory (DFT) calculations are used to confirm the experimental observations by calculating the vibrational modes of the surface-bound intermediate species. Here, we provide spectroscopic evidence that the wet plasma increases the SO2 and the NOx removal through the formation of highly reactive OH radicals, driving the reactions to H2SO4 and HNO3, respectively. We observed the formation of SO3 and SO4 species in the SO2 wet-plasma-driven remediation, while in the dry plasma, we only identified SO3 adsorbed on the Ag surface. During the removal of NO in the dry and wet plasma, both NO2 and NO3 species were observed on the Ag surface; however, the concentration of NO3 species was enhanced under wet-plasma conditions. By closing the loop between the experimental and DFT-calculated spectra, we identified not only the adsorbed species associated with each peak in the SERS spectra but also their orientation and adsorption site, providing a detailed atomistic picture of the chemical reaction pathway and surface interaction chemistry.

8.
Nano Lett ; 20(3): 1791-1799, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32097556

RESUMO

Here, we show that the turn-on voltage for the hydrogen evolution reaction on a graphene surface can be tuned in a semiconductor-insulator-graphene (SIG) device immersed in a solution. Specifically, it is shown that the hydrogen evolution reaction (HER) onset for the graphene can shift by >0.8 V by application of a voltage across a graphene-Al2O3-silicon junction. We show that this shift occurs due to the creation of a hot electron population in graphene due to tunneling from the Si to graphene. Through control experiments, we show that the presence of the graphene is necessary for this behavior. By analyzing the silicon, graphene, and solution current components individually, we find an increase in the silicon current despite a fixed graphene-silicon voltage, corresponding to an increase in the HER current. This additional silicon current appears to directly drive the electrochemical reaction, without modifying the graphene current. We term this current "direct injection current" and hypothesize that this current occurs due to electrons injected from the silicon into graphene that drives the HER before any electron-electron scattering occurs in the graphene. To further determine whether hot electrons injected at different energies could explain the observed total solution current, the nonequilibrium electron dynamics was studied using a 2D ensemble Monte Carlo Boltzmann transport equation (MCBTE) solver. By rigorously considering the key scattering mechanisms, we show that the injected hot electrons can significantly increase the available electron flux at high energies. These results show that semiconductor-insulator-graphene devices are a platform which can tune the electrochemical reaction rate via multiple mechanisms.

9.
Nano Lett ; 20(11): 8008-8014, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33095023

RESUMO

We explore the effect of charge density wave (CDW) on the in-plane thermoelectric transport properties of (PbSe)1+δ(VSe2)1 and (PbSe)1+δ(VSe2)2 heterostructures. In (PbSe)1+δ(VSe2)1 we observe an abrupt 86% increase in the Seebeck coefficient, 245% increase in the power factor, and a slight decrease in resistivity over the CDW transition. This behavior is not observed in (PbSe)1+δ(VSe2)2 and is rather unusual compared to the general trend observed in other materials. The abrupt transition causes a deviation from the Mott relationship through correlated electron states. Raman spectra of the (PbSe)1+δ(VSe2)1 material show the emergence of additional peaks below the CDW transition temperature associated with VSe2 material. Temperature-dependent in-plane X-ray diffraction (XRD) spectra show a change in the in-plane thermal expansion of VSe2 in (PbSe)1+δ(VSe2)1 due to lattice distortion. The increase in the power factor and decrease in the resistivity due to CDW suggest a potential mechanism for enhancing the thermoelectric performance at the low temperature region.

10.
Nano Lett ; 19(9): 6227-6234, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31433658

RESUMO

Using hot electrons to drive electrochemical reactions has drawn considerable interest in driving high-barrier reactions and enabling efficient solar to fuel conversion. However, the conversion efficiency from hot electrons to electrochemical products is typically low due to high hot electron scattering rates. Here, it is shown that the hydrogen evolution reaction (HER) in an acidic solution can be efficiently modulated by hot electrons injected into a thin gold film by an Au-Al2O3-Si metal-insulator-semiconductor (MIS) junction. Despite the large scattering rates in gold, it is shown that the hot electron driven HER can reach quantum efficiencies as high as ∼85% with a shift in the onset of hydrogen evolution by ∼0.6 V. By simultaneously measuring the currents from the solution, gold, and silicon terminals during the experiments, we find that the HER rate can be decomposed into three components: (i) thermal electron, corresponding to the thermal electron distribution in gold; (ii) hot electron, corresponding to electrons injected from silicon into gold which drive the HER before fully thermalizing; and (iii) silicon direct injection, corresponding to electrons injected from Si into gold that drive the HER before electron-electron scattering occurs. Through a series of control experiments, we eliminate the possibility of the observed HER rate modulation coming from lateral resistivity of the thin gold film, pinholes in the gold, oxidation of the MIS device, and measurement circuit artifacts. Next, we theoretically evaluate the feasibility of hot electron injection modifying the available supply of electrons. Considering electron-electron and electron-phonon scattering, we track how hot electrons injected at different energies interact with the gold-solution interface as they scatter and thermalize. The simulator is first used to reproduce other published experimental pump-probe hot electron measurements, and then simulate the experimental conditions used here. These simulations predict that hot electron injection first increases the supply of electrons to the gold-solution interface at higher energies by several orders of magnitude and causes a peaked electron interaction with the gold-solution interface at the electron injection energy. The first prediction corresponds to the observed hot electron electrochemical current, while the second prediction corresponds to the observed silicon direct injection current. These results indicate that MIS devices offer a versatile platform for hot electron sources that can efficiently drive electrochemical reactions.

11.
Faraday Discuss ; 214(0): 325-339, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31049541

RESUMO

Plasmon resonant grating structures provide an effective platform for distinguishing between the effects of plasmon resonant excitation and bulk metal absorption via interband transitions. By simply rotating the polarization of the incident light, we can switch between resonant excitation and non-resonant excitation, while keeping all other parameters of the measurement constant. With light polarized perpendicular to the lines in the grating (i.e., TE-polarization), the photocatalytic reaction rate (i.e., photocurrent) is measured as the angle of the incident laser light is tuned through the resonance with the grating. Here, hot holes photoexcited in the metal are used to drive the oxygen evolution reaction (OER), producing a measurable photocurrent. Using TE-polarized light, we observe sharp peaks in the photocurrent and sharp dips in the photoreflectance at approximately 9° from normal incidence, which corresponds to the conditions under which there is good wavevector matching between the incident light and the lines in the grating. With light polarized parallel to the grating (i.e., TM), we excite the grating structure non-resonantly and there is no angular dependence in the photocurrent or photoreflectance. In order to quantify the lifetime of these hot carriers, we performed transient absorption spectroscopy of these plasmon resonant grating structures. Here, we observe one feature in the spectra corresponding to interband transitions and another feature associated with the plasmon resonant mode in the grating. Both features decay over a time scale of 1-2 ps. The spectral responses of grating structures fabricated with Ag, Al, and Cu are also presented.

12.
Environ Res ; 178: 108635, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514016

RESUMO

Recent studies have shown that nanoscale particulate matter produced in commercial charbroiling processes represents a serious health hazard and has been linked to various forms of cancer and cardiopulmonary disease. In this study, we propose a highly effective method for treating restaurant smoke emissions using a transient pulsed plasma reactor produced by nanosecond high voltage pulses. We measure the size and relative mass distributions of particulate matter (PM) produced in commercial charbroiling processes (e.g., cooking of hamburger meat) both with and without the plasma treatment. Here, the plasma discharge is produced in a 3" diameter cylindrical reactor with a 5-10 ns high voltage (17 kV) pulse generator. The distribution of untreated nanoparticle sizes is peaked around 125-150 nm in diameter, as measured using a scanning mobility particle sizer (SMPS) spectrometer. With plasma treatment, we observe up to a 55-fold reduction in relative particle mass and a significant reduction in the nanoparticle size distribution using this method. The effectiveness of the nanoscale PM remediation increases with both the pulse repetition rate and pulse voltage, demonstrating the scalability of this approach for treating particulate matter at higher flow rates and larger diameter reactors.


Assuntos
Poluentes Atmosféricos , Culinária , Recuperação e Remediação Ambiental/métodos , Material Particulado , Restaurantes/estatística & dados numéricos , Monitoramento Ambiental , Tamanho da Partícula , Fumaça
13.
Nano Lett ; 17(3): 1978-1986, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28177640

RESUMO

We report cross-plane thermoelectric measurements of misfit layered compounds (SnSe)n(TiSe2)n (n = 1,3,4,5), approximately 50 nm thick. Metal resistance thermometers are fabricated on the top and bottom of the (SnSe)n(TiSe2)n material to measure the temperature difference and heat transport through the material directly. By varying the number of layers in a supercell, n, we vary the interface density while maintaining a constant global stoichiometry. The Seebeck coefficient measured across the (SnSe)n(TiSe2)n samples was found to depend strongly on the number of layers in the supercell (n). When n decreases from 5 to 1, the cross-plane Seebeck coefficient decreases from -31 to -2.5 µV/K, while the cross-plane effective thermal conductivity decreases by a factor of 2, due to increased interfacial phonon scattering. The cross-plane Seebeck coefficients of the (SnSe)n(TiSe2)n are very different from the in-plane Seebeck coefficients, which are higher in magnitude and less sensitive to the number of layers in a supercell, n. We believe this difference is due to the different carrier types in the n-SnSe and p-TiSe2 layers and the effect of tunneling on the cross-plane transport.

15.
Phys Chem Chem Phys ; 19(4): 2877-2881, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28074948

RESUMO

We report measurements of photocatalytic water splitting using Au films with and without TiO2 coatings. In these structures, a thin (3-10 nm) film of TiO2 is deposited using atomic layer deposition (ALD) on top of a 100 nm thick Au film. We utilize an AC lock-in technique, which enables us to detect the relatively small photocurrents (∼µA) produced by the short-lived hot electrons that are photoexcited in the metal. Under illumination, the bare Au film produces a small AC photocurrent (<1 µA) for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) due to hot electrons and hot holes, respectively, that are photoexcited in the Au film. The samples with TiO2 produce a larger AC photocurrent indicating that hot electrons are being injected from the metal into the TiO2 semiconductor where they then reduce hydrogen ions in solution forming H2 (i.e., 2H+ + 2e- → H2). The AC photocurrent exhibits a narrow peak when plotted as a function of reference potential, which is a signature of hot electrons. Here, we photoexcite a monoenergetic source of hot electrons, which produces a peak in the photocurrent, as the electrode potential is swept through the resonance with the redox potential of the desired half-reaction. This stands in contrast to conventional bulk semiconductor photocatalysts, whose AC photocurrent saturates beyond a certain potential (i.e., light limited photocurrent). The photocurrents produced at the metal-liquid interface are smaller than those of the metal-semiconductor system, mainly because, in the metal-semiconductor system, there is a continuum of energy and momentum states that each hot electron can be injected into, while for an ion in solution, the number of energy and momentum states are very small.

16.
Nano Lett ; 15(6): 3977-82, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25993397

RESUMO

Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds and therefore make more "ideal" Schottky junctions than bulk semiconductors, which produce Fermi energy pinning and recombination centers at the interface with bulk metals, inhibiting charge transfer. Here, we observe a more than 10× enhancement in the indirect band gap photoluminescence of transition metal dichalcogenides (TMDCs) deposited on various metals (e.g., Cu, Au, Ag), while the direct band gap emission remains unchanged. We believe the main mechanism of light emission arises from photoexcited hot electrons in the metal that are injected into the conduction band of MoS2 and WSe2 and subsequently recombine radiatively with minority holes in the TMDC. Since the conduction band at the K-point is 0.5 eV higher than at the Σ-point, a lower Schottky barrier exists for the Σ-point band, making electron injection more favorable. Also, the Σ band consists of the sulfur pz orbital, which overlaps more significantly with the electron wave functions in the metal. This enhancement in the indirect emission only occurs for thick flakes of MoS2 and WSe2 (≥100 nm) and is completely absent in monolayer and few-layer (∼10 nm) flakes. Here, the flake thickness must exceed the depletion width of the Schottky junction, in order for efficient radiative recombination to occur in the TMDC. The intensity of this indirect peak decreases at low temperatures, which is consistent with the hot electron injection model.

17.
Nano Lett ; 15(11): 7217-24, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26502060

RESUMO

Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.

18.
Nano Lett ; 15(9): 6177-81, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26267352

RESUMO

Here, we report photocatalytic CO2 reduction with water to produce methanol using TiO2-passivated InP nanopillar photocathodes under 532 nm wavelength illumination. In addition to providing a stable photocatalytic surface, the TiO2-passivation layer provides substantial enhancement in the photoconversion efficiency through the introduction of O vacancies associated with the nonstoichiometric growth of TiO2 by atomic layer deposition. Plane wave-density functional theory (PW-DFT) calculations confirm the role of oxygen vacancies in the TiO2 surface, which serve as catalytically active sites in the CO2 reduction process. PW-DFT shows that CO2 binds stably to these oxygen vacancies and CO2 gains an electron (-0.897e) spontaneously from the TiO2 support. This calculation indicates that the O vacancies provide active sites for CO2 absorption, and no overpotential is required to form the CO2(-) intermediate. The TiO2 film increases the Faraday efficiency of methanol production by 5.7× to 4.79% under an applied potential of -0.6 V vs NHE, which is 1.3 V below the E(o)(CO2/CO2(-)) = -1.9 eV standard redox potential. Copper nanoparticles deposited on the TiO2 act as a cocatalyst and further improve the selectivity and yield of methanol production by up to 8-fold with a Faraday efficiency of 8.7%.

19.
Small ; 11(26): 3119-23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25767070

RESUMO

Photodetectors based on quasi-metallic carbon nanotubes exhibit unique optoelectronic properties. Due to their small bandgap, photocurrent generation is possible at room temperature. The origin of this photocurrent is investigated to determine the underlying mechanism, which can be photothermoelectric effect or photovoltaic effect, depending on the bandgap magnitude of the quasi-metallic nanotube.

20.
Chemistry ; 21(39): 13502-7, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26224665

RESUMO

A robust and reliable method for improving the photocatalytic performance of InP, which is one of the best known materials for solar photoconversion (i.e., solar cells). In this article, we report substantial improvements (up to 18×) in the photocatalytic yields for CO2 reduction to CO through the surface passivation of InP with TiO2 deposited by atomic layer deposition (ALD). Here, the main mechanisms of enhancement are the introduction of catalytically active sites and the formation of a pn-junction. Photoelectrochemical reactions were carried out in a nonaqueous solution consisting of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM]BF4), dissolved in acetonitrile, which enables CO2 reduction with a Faradaic efficiency of 99% at an underpotential of +0.78 V. While the photocatalytic yield increases with the addition of the TiO2 layer, a corresponding drop in the photoluminescence intensity indicates the presence of catalytically active sites, which cause an increase in the electron-hole pair recombination rate. NMR spectra show that the [EMIM](+) ions in solution form an intermediate complex with CO2(-), thus lowering the energy barrier of this reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA