Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Syst Biol ; 72(6): 1220-1232, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37449764

RESUMO

Despite the economic, ecological, and scientific importance of the genera Salix L. (willows) and Populus L. (poplars, cottonwoods, and aspens) Salicaceae, we know little about the sources of differences in species diversity between the genera and of the phylogenetic conflict that often confounds estimating phylogenetic trees. Salix subgenera and sections, in particular, have been difficult to classify, with one recent attempt termed a "spectacular failure" due to a speculated radiation of the subgenera Vetrix and Chamaetia. Here, we use targeted sequence capture to understand the evolutionary history of this portion of the Salicaceae plant family. Our phylogenetic hypothesis was based on 787 gene regions and identified extensive phylogenetic conflict among genes. Our analysis supported some previously described subgeneric relationships and confirmed the polyphyly of others. Using an fbranch analysis, we identified several cases of hybridization in deep branches of the phylogeny, which likely contributed to discordance among gene trees. In addition, we identified a rapid increase in diversification rate near the origination of the Vetrix-Chamaetia clade in Salix. This region of the tree coincided with several nodes that lacked strong statistical support, indicating a possible increase in incomplete lineage sorting due to rapid diversification. The extraordinary level of both recent and ancient hybridization in both Salix and Populus have played important roles in the diversification and diversity in these two genera.


Assuntos
Populus , Salix , Filogenia , Salix/genética , Populus/genética , Evolução Biológica , Hibridização Genética
2.
Am Nat ; 199(2): 206-222, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35077276

RESUMO

AbstractA feature of biodiversity is the abundance of curves displayed by organs and organisms. Curvature is a widespread, convergent trait that has important ecological and evolutionary implications. In pollination ecology, the curvature of flowers and pollinator mouthparts (e.g., hummingbird bills) along the dorsiventral plane has been associated with specialization, competition, and species coexistence. Six differing methods have historically been used to measure curvature in pollination systems; we provide a solution to this inconsistency by defining curvature using well-established concepts from differential geometry. Intuitively, curvature is the degree to which a line is not straight, but more formally it is the rate at which the tangent of a curve changes direction with respect to arc length. Here, we establish a protocol wherein a line is fitted against landmarks placed on an image of a curved organ or organism, then curvature is computed at many points along the fitted line and the sum taken. The protocol is demonstrated by studying the development of nectar spur curvature in the flowering plant genus Epimedium (Berberidaceae). By clarifying the definition of curvature, our aim is to make the language of comparative morphology more precise and broadly applicable to capture other curved structures in nature.


Assuntos
Néctar de Plantas , Polinização , Animais , Aves/anatomia & histologia , Flores/anatomia & histologia , Plantas
3.
Mol Ecol ; 30(23): 6072-6086, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34137092

RESUMO

Whole-genome sequencing of non-model organisms is now widely accessible and has allowed a range of questions in the field of molecular ecology to be investigated with greater power. However, some genomic regions that are of high biological interest remain problematic for assembly and data-handling. Three such regions are the major histocompatibility complex (MHC), sex-determining regions (SDRs) and the plant self-incompatibility locus (S-locus). Using these as examples, we illustrate the challenges of both assembling and resequencing these highly polymorphic regions and how bioinformatic and technological developments are enabling new approaches to their study. Mapping short-read sequences against multiple alternative references improves genotyping comprehensiveness at the S-locus thereby contributing to more accurate assessments of allelic frequencies. Long-read sequencing, producing reads of several tens to hundreds of kilobase pairs in length, facilitates the assembly of such regions as single sequences can span the multiple duplicated gene copies of the MHC region, and sequence through repetitive stretches and translocations in SDRs and S-locus haplotypes. These advances are adding value to short-read genome resequencing approaches by allowing, for example, more accurate haplotype phasing across longer regions. Finally, we assessed further technical improvements, such as nanopore adaptive sequencing and bioinformatic tools using pangenomes, which have the potential to further expand our knowledge of a number of genomic regions that remain challenging to study with classical resequencing approaches.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Complexo Principal de Histocompatibilidade , Genômica , Complexo Principal de Histocompatibilidade/genética , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
4.
Biol Lett ; 17(3): 20210007, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33653097

RESUMO

The extinction of species before they are discovered and named (dark extinction, DE) is widely inferred as a significant part of species loss in the 'pre-taxonomic' period (approx. 1500-1800 CE) and, to some extent, in the 'taxonomic period' (approx. 1800-present) as well. The discovery of oceanic islands and other pristine habitats by European navigators and the consequent introduction of destructive mammals, such as rats and goats, started a process of anthropogenic extinction. Much ecosystem change happened before systematic scientific recording, so has led to DE. Statistical methods are available to robustly estimate DE in the 'taxonomic period'. For the 'pre-taxonomic period', simple extrapolation can be used. The application of these techniques to world birds, for example, suggests that approximately 56 DEs occurred in the 'taxonomic period' (1800-present) and approximately 180 in the 'pre-taxonomic period' (1500-1800). Targeting collection activities in extinction hotspots, to make sure organisms are represented in collections before their extinction, is one way of reducing the number of extinct species without a physical record (providing that collection efforts do not themselves contribute to species extinction).


Assuntos
Ecossistema , Extinção Biológica , Animais , Aves , Mamíferos , Ratos
5.
Plant Cell Physiol ; 61(10): 1733-1749, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726442

RESUMO

Lathyrus odoratus (sweet pea) is an ornamental plant with exceptional floral scent, previously used as an experimental organism in the early development of Mendelian genetics. However, its terpene synthases (TPSs), which act as metabolic gatekeepers in the biosynthesis of volatile terpenoids, remain to be characterized. Auto-Headspace Solid-phase Microextraction/Gas chromatography-mass spectrometry analysis of floral volatile terpene constituents from seven sweet pea cultivars identified α-bergamotene, linalool, (-)-α-cubebene, geraniol, ß-caryophyllene and ß-sesquiphellandrene as the dominant compounds. RNA sequencing was performed to profile the transcriptome of L. odoratus flowers. Bioinformatic analysis identified eight TPS genes (acronymed as LoTPS) that were successfully cloned, heterologously expressed and functionally analyzed. LoTPS4 and LoTPS7, belonging to the TPS-b clade, biochemically catalyzed the formation of monoterpenes and sesquiterpenes. LoTPS3 and LoTPS8, placed in the TPS-a clade, also generated monoterpenes and sesquiterpenes, while LoTPS12 belonging to the TPS-g clade showed linalool/nerolidol synthase activity. Notably, biochemical assays of the recombinant LoTPS proteins revealed their catalytic promiscuity, and the enzymatic products were basically consistent with major volatile compounds released from sweet pea flowers. The data from our study lay the foundation for the chemical ecology, molecular genetics and biotechnological improvement of sweet pea and other legumes (Fabaceae).


Assuntos
Alquil e Aril Transferases/metabolismo , Flores/metabolismo , Lathyrus/metabolismo , Terpenos/metabolismo , Alquil e Aril Transferases/genética , Arabidopsis/genética , Cromatografia Gasosa-Espectrometria de Massas , Sequenciamento de Nucleotídeos em Larga Escala , Lathyrus/enzimologia , Lathyrus/genética , Filogenia , Alinhamento de Sequência , Compostos Orgânicos Voláteis/metabolismo
6.
New Phytol ; 217(1): 416-427, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29124769

RESUMO

Introgression can be an important source of adaptive phenotypes, although conversely it can have deleterious effects. Evidence for adaptive introgression is accumulating but information on the genetic architecture of introgressed traits lags behind. Here we determine trait architecture in Populus trichocarpa under introgression from P. balsamifera using admixture mapping and phenotypic analyses. Our results reveal that admixture is a key driver of clinal adaptation and suggest that the northern range extension of P. trichocarpa depends, at least in part, on introgression from P. balsamifera. However, admixture with P. balsamifera can lead to potentially maladaptive early phenology, and a reduction in growth and disease resistance in P. trichocarpa. Strikingly, an introgressed chromosome 9 haplotype block from P. balsamifera restores the late phenology and high growth parental phenotype in admixed P. trichocarpa. This epistatic restorer block may be strongly advantageous in maximizing carbon assimilation and disease resistance in the southernmost populations where admixture has been detected. We also confirm a previously demonstrated case of adaptive introgression in chromosome 15 and show that introgression generates a transgressive chlorophyll-content phenotype. We provide strong support that introgression provides a reservoir of genetic variation associated with adaptive characters that allows improved survival in new environments.


Assuntos
Adaptação Biológica/genética , Variação Genética , Genoma de Planta/genética , Populus/genética , Haplótipos , Hibridização Genética , Fenótipo , Populus/fisiologia
7.
Mol Ecol ; 27(23): 4653-4656, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30562841

RESUMO

Is interspecific hybridization an ordinary part of species biology? And if so, how evolutionarily important is it? These questions have been discussed in the botanical literature, in one form or another, at least since J.P. Lotsy early in the last century. He coined the term syngameon, now defined as "a group of otherwise distinct species interconnected by limited gene exchange, i.e. the most inclusive interbreeding evolutionary unit" (Suarez-Gonzalez, Lexer, & Cronk, Biology Letters, 14, 20170688, ). North American poplars (Populus, Salicaceae) form one such syngameon. In this issue of Molecular Ecology, a new study (Chhatre, Evans, DiFazio, & Keller, Molecular Ecology, 27, ) uses three species from the North American poplar syngameon to tackle the twin issues of (a) the extent of gene exchange and (b) the significance of this gene exchange to the biology of these trees. They demonstrate that a hybrid zone exists where the ranges of Populus angustifolia and Populus balsamifera overlap in the Rocky Mountains, and postulate that this hybridization may facilitate population survival at the range edges. Indeed, the authors show that a remarkable number of loci are introgressing under selection. Very remarkably, they detect additional hybridity (making a trihybrid zone) with Populus trichocarpa (a species that does not occur in the area). Intriguingly, there is some genomic evidence of ancient introgression events. This suggests a model of episodic species divergence and hybridization, in which the syngameon is dynamic and behaving as a supraspecific metapopulation over geological time.


Assuntos
Populus/genética , Evolução Biológica , Genética Populacional , Hibridização Genética , Hibridização de Ácido Nucleico
8.
Mol Ecol ; 27(7): 1667-1680, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29575353

RESUMO

Introgression can introduce novel genetic variation at a faster rate than mutation alone and result in adaptive introgression when adaptive alleles are maintained in the recipient genome over time by natural selection. A previous study from our group demonstrated adaptive introgression from Populus balsamifera into P. trichocarpa in a target genomic region. Here we expand our local ancestry analysis to the whole genome of both parents to provide a comprehensive view of introgression patterns and to identify additional candidate regions for adaptive introgression genomewide. Populus trichocarpa is a large, fast-growing tree of mild coastal regions of the Pacific Northwest, whereas P. balsamifera is a smaller stature tree of continental and boreal regions with intense winter cold. The species hybridize where they are parapatric. We detected asymmetric patterns of introgression across the whole genome of these two poplar species adapted to contrasting environments, with stronger introgression from P. balsamifera to P. trichocarpa than vice versa. Admixed P. trichocarpa individuals contained more genomic regions with unusually high levels of introgression (19 regions) and also the largest introgressed genome fragment (1.02 Mb) compared with admixed P. balsamifera (nine regions). Our analysis also revealed numerous candidate regions for adaptive introgression with strong signals of selection, notably related to disease resistance, and enriched for genes that may play crucial roles in survival and adaptation. Furthermore, we detected a potential overrepresentation of subtelomeric regions in P. balsamifera introgressed into P. trichocarpa and possible protection of sex-determining regions from interspecific gene flow.


Assuntos
Adaptação Biológica , Endogamia , Populus/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genes de Plantas , Geografia , Filogenia , Doenças das Plantas/genética , Populus/genética , Seleção Genética , Especificidade da Espécie , Telômero/metabolismo
9.
Syst Biol ; 66(5): 786-798, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123117

RESUMO

Novel sequencing technologies are rapidly expanding the size of data sets that can be applied to phylogenetic studies. Currently the most commonly used phylogenomic approaches involve some form of genome reduction. While these approaches make assembling phylogenomic data sets more economical for organisms with large genomes, they reduce the genomic coverage and thereby the long-term utility of the data. Currently, for organisms with moderate to small genomes ($<$1000 Mbp) it is feasible to sequence the entire genome at modest coverage ($10-30\times$). Computational challenges for handling these large data sets can be alleviated by assembling targeted reads, rather than assembling the entire genome, to produce a phylogenomic data matrix. Here we demonstrate the use of automated Target Restricted Assembly Method (aTRAM) to assemble 1107 single-copy ortholog genes from whole genome sequencing of sucking lice (Anoplura) and out-groups. We developed a pipeline to extract exon sequences from the aTRAM assemblies by annotating them with respect to the original target protein. We aligned these protein sequences with the inferred amino acids and then performed phylogenetic analyses on both the concatenated matrix of genes and on each gene separately in a coalescent analysis. Finally, we tested the limits of successful assembly in aTRAM by assembling 100 genes from close- to distantly related taxa at high to low levels of coverage.Both the concatenated analysis and the coalescent-based analysis produced the same tree topology, which was consistent with previously published results and resolved weakly supported nodes. These results demonstrate that this approach is successful at developing phylogenomic data sets from raw genome sequencing reads. Further, we found that with coverages above $5-10\times$, aTRAM was successful at assembling 80-90% of the contigs for both close and distantly related taxa. As sequencing costs continue to decline, we expect full genome sequencing will become more feasible for a wider array of organisms, and aTRAM will enable mining of these genomic data sets for an extensive variety of applications, including phylogenomics. [aTRAM; gene assembly; genome sequencing; phylogenomics.].


Assuntos
Classificação/métodos , Genômica/métodos , Filogenia , Análise de Sequência
10.
Biol Lett ; 14(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29540564

RESUMO

Introgression is emerging as an important source of novel genetic variation, alongside standing variation and mutation. It is adaptive when such introgressed alleles are maintained by natural selection. Recently, there has been an explosion in the number of studies on adaptive introgression. In this review, we take a plant perspective centred on four lines of evidence: (i) introgression, (ii) selection, (iii) phenotype and (iv) fitness. While advances in genomics have contributed to our understanding of introgression and porous species boundaries (task 1), and the detection of signatures of selection in introgression (task 2), the investigation of adaptive introgression critically requires links to phenotypic variation and fitness (tasks 3 and 4). We also discuss the conservation implications of adaptive introgression in the face of climate change. Adaptive introgression is particularly important in rapidly changing environments, when standing genetic variation and mutation alone may only offer limited potential for adaptation. We conclude that clarifying the magnitude and fitness effects of introgression with improved statistical techniques, coupled with phenotypic evidence, has great potential for conservation and management efforts.


Assuntos
Fluxo Gênico , Aptidão Genética , Fenótipo , Plantas/genética , Seleção Genética , Adaptação Biológica
11.
J Hered ; 109(2): 152-161, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29240932

RESUMO

Wildflower seeds are routinely spread along highways and thoroughfares throughout North America as part of federal beautification policy, but the genetic effect of the introduction of these cultivated populations on wild populations of the same species is unknown. Interbreeding may occur between these seeded and wild populations, resulting in several possible outcomes. Here we sample 187 individuals in 12 matched pairs of neighboring wild and seeded populations of the Texas bluebonnet (Lupinus texensis), a species popular in commercially available wildflower seed mixes used by both the Texas Department of Transportation and the public. We use genotyping by sequencing to identify 11741 genome-wide single nucleotide polymorphisms, as well as a smaller number of SNPs from the chloroplast genome, to analyze population structure and genetic diversity within and between the populations. We find a striking lack of population structure both between wild and seeded populations and amongst wild populations. STRUCTURE analyses indicate that all populations are apparently panmictic. This pattern may be explained by extensive swamping of wild populations by seeded germplasm and increased dispersal of semi-domesticated seed across this species' core native range by humans. We discuss the possible negative and positive ramifications of homogenization on the evolutionary future of this popular wildflower species.


Assuntos
Variação Genética , Lupinus/genética , Cruzamento , Evolução Molecular , Polimorfismo de Nucleotídeo Único , Reprodução , Sementes/genética
12.
Mol Ecol ; 26(9): 2407-2409, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28449375

RESUMO

Wet tropical forests are among the most diverse ecosystems on Earth and can host several hundreds of tree species per hectare. To maintain such diversity, the community must contain large numbers of relatively rare species rather than be dominated by a few very common trees, as is often the case in temperate forests. Explaining the mechanisms preventing dominance by common species has been a major task of tropical forest ecology. One of the most promising mechanisms is negative density dependence (NDD) of tree abundance driven by pests, including fungal diseases ('pest pressure'). NDD entails that the chance of survival of a sapling increases with the distance from a mature tree of the same species, thus preventing species from becoming locally dominant. Curiously, the strength of NDD is negatively correlated with abundance, meaning that tree species that are more common generally show weaker NDD (Comita et al. ). Interactions between plants and soil pathogens have been shown to play an important role in NDD (Klironomos ), and rare species are apparently more strongly affected (Mangan et al. ). However, the genetic mechanisms underlying this phenomenon have remained obscure. In this issue of Molecular Ecology, Marden et al. () suggest that reduced diversity of the genes involved in pathogen recognition (Resistance genes or R genes) could explain why NDD is stronger in locally rare species.


Assuntos
Floresta Úmida , Árvores , Florestas , Genômica , Densidade Demográfica , Clima Tropical
13.
Ann Bot ; 120(4): 563-575, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28981620

RESUMO

Background and Aims: Post-anthesis colour change (PACC) is widely thought to be an adaptation to signal floral suitability to pollinators. Lotus filicaulis and Lotus sessilifolius are insect-pollinated herbaceous legumes with flowers that open yellow, shift to orange and finally red. This study examines the molecular basis for floral colour change in these Lotus species. Methods: Lotus filicaulis was cultivated in a glasshouse from which pollinating insects (bees) were excluded, and the rate of colour change was recorded in both unpollinated and manually pollinated flowers. Unpollinated flowers from both the yellow stage and the red stage were sampled for sequencing. The transcriptomes of L. filicaulis and L. sessilifolius of both colour stages were analysed for differentially expressed genes and enriched ontologies. Key Results: The rate of progression through PACC doubled when L. filicaulis was hand-pollinated. De novo assembly of RNA-Seq reads from non-model Lotus species outperformed heterologous alignment of reads to the L. japonicus genome. Differential expression analysis suggested that the carotenoid biosynthetic pathway is upregulated at anthesis while the flavonoid biosynthetic pathway is upregulated with the onset of PACC in L. filicaulis and L. sessilifolius . Conclusion: Pollination significantly accelerates PACC in L. filicaulis , consistent with the hypothesis that PACC increases pollination efficiency by directing pollinators to unpollinated flowers. RNA-Seq results show the synchronized upregulation of the entire cyanidin biosynthesis pathway in the red stage of PACC in L. filicaulis and L. sessilifolius . The genes implicated offer the basis for further investigations into how gene families, transcription factors and related pathways are likely to be involved in PACC.


Assuntos
Flores/metabolismo , Lotus/metabolismo , Polinização/fisiologia , Antocianinas/metabolismo , Carotenoides/metabolismo , Cor , Flores/anatomia & histologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Lotus/anatomia & histologia , Lotus/genética , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Fenótipo , Filogenia , Transcriptoma
14.
Mol Ecol ; 25(23): 5827-5829, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27900850

RESUMO

In plants, pollination syndromes (the correlated presence of many features of relevance to pollination mode, for instance pollination by a particular animal clade) are a striking feature of plant biodiversity, providing great floral phenotypic diversity (Fenster et al. ). Adaptation to a particular animal pollinator provides an explanation for why recently diverged plants can have such extreme differentiation in floral form. One might expect such elaborate adaptations to provide a high degree of pollinator specificity and hence reproductive isolation, but there are many cases where substantial gene flow exists between extreme floral morphs (see Table 1), and the resulting hybrids may be highly fertile. This gene flow provides tremendous opportunities to study the genetics and biology of the pollination syndromes by providing intermediate forms and segregating genotypes. If it is true that pollination syndromes result from adaptation under strong selection, we will expect such flowers to be crucibles of natural selection. If strong selection for particular floral phenotypes can be shown, then this, when coupled with hybridization, will give us one of the most valuable of all experimental systems for evolutionary research: gene flow and selection in balance. In this issue of Molecular Ecology, the paper of Milano et al. () delivers this. It shows that in populations of the Ipomopsis aggregata complex, gene flow between pollination morphs is high and selection to stabilize those morphs is also high: a probable case of gene flow-selection balance.


Assuntos
Fluxo Gênico , Polinização , Animais , Evolução Biológica , Flores , Fenótipo , Síndrome
15.
Mol Ecol ; 25(11): 2427-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26825293

RESUMO

Natural hybrid zones in forest trees provide systems to study the transfer of adaptive genetic variation by introgression. Previous landscape genomic studies in Populus trichocarpa, a keystone tree species, indicated genomic footprints of admixture with its sister species Populus balsamifera and identified candidate genes for local adaptation. Here, we explored the patterns of introgression and signals of local adaptation in P. trichocarpa and P. balsamifera, employing genome resequencing data from three chromosomes in pure species and admixed individuals from wild populations. Local ancestry analysis in admixed P. trichocarpa revealed a telomeric region in chromosome 15 with P. balsamifera ancestry, containing several candidate genes for local adaptation. Genomic analyses revealed signals of selection in certain genes in this region (e.g. PRR5, COMT1), and functional analyses based on gene expression variation and correlations with adaptive phenotypes suggest distinct functions of the introgressed alleles. In contrast, a block of genes in chromosome 12 paralogous to the introgressed region showed no signs of introgression or signatures of selection. We hypothesize that the introgressed region in chromosome 15 has introduced modular or cassette-like variation into P. trichocarpa. These linked adaptive mutations are associated with a block of genes in chromosome 15 that appear to have undergone neo- or subfunctionalization relative to paralogs in a duplicated region on chromosome 12 that show no signatures of adaptive variation. The association between P. balsamifera introgressed alleles with the expression of adaptive traits in P. trichocarpa supports the hypothesis that this is a case of adaptive introgression in an ecologically important foundation species.


Assuntos
Adaptação Biológica/genética , Hibridização Genética , Populus/genética , Seleção Genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Genoma de Planta , Haplótipos , Fenótipo , Polimorfismo de Nucleotídeo Único , Populus/classificação , Análise de Sequência de DNA , Telômero/genética
16.
BMC Bioinformatics ; 16: 98, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25887972

RESUMO

BACKGROUND: Assembling genes from next-generation sequencing data is not only time consuming but computationally difficult, particularly for taxa without a closely related reference genome. Assembling even a draft genome using de novo approaches can take days, even on a powerful computer, and these assemblies typically require data from a variety of genomic libraries. Here we describe software that will alleviate these issues by rapidly assembling genes from distantly related taxa using a single library of paired-end reads: aTRAM, automated Target Restricted Assembly Method. The aTRAM pipeline uses a reference sequence, BLAST, and an iterative approach to target and locally assemble the genes of interest. RESULTS: Our results demonstrate that aTRAM rapidly assembles genes across distantly related taxa. In comparative tests with a closely related taxon, aTRAM assembled the same sequence as reference-based and de novo approaches taking on average < 1 min per gene. As a test case with divergent sequences, we assembled >1,000 genes from six taxa ranging from 25 - 110 million years divergent from the reference taxon. The gene recovery was between 97 - 99% from each taxon. CONCLUSIONS: aTRAM can quickly assemble genes across distantly-related taxa, obviating the need for draft genome assembly of all taxa of interest. Because aTRAM uses a targeted approach, loci can be assembled in minutes depending on the size of the target. Our results suggest that this software will be useful in rapidly assembling genes for phylogenomic projects covering a wide taxonomic range, as well as other applications. The software is freely available http://www.github.com/juliema/aTRAM .


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Análise de Sequência de DNA/métodos , Software , Loci Gênicos , Biblioteca Genômica , Genômica
17.
BMC Genomics ; 16: 943, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26572921

RESUMO

BACKGROUND: Recent studies show that galling Hymenoptera and Diptera are able to synthesize the plant hormone indole-3-acetic acid (auxin) from tryptophan and that plant response to insect-produced auxin is implicated in gall formation. We examined the leaf transcriptome of galled and ungalled leaves of individuals of the Hawaiian endemic plant Metrosideros polymorpha (Myrtaceae) subject to infestation by psyllid (Hemiptera) gall-makers in the genus Trioza (Triozidae). RESULTS: Transcript libraries were sequenced using Illumina technology and the reads assembled de novo into contigs. Functional identification of contigs followed a two-step procedure, first identifying contigs by comparison to the completely sequenced genome of the related Eucalyptus, followed by identifying the equivalent Arabidopsis gene using a pre-computed mapping between Eucalyptus and Arabidopsis genes. This allowed us to use the rich functional annotation of the Arabidopsis genome to assess the transcriptional landscape of galling in Metrosideros. Comparing galled and ungalled leaves, we find a highly significant enrichment of expressed genes with a gene ontology (GO) annotation to auxin response in the former. One gene consistently expressed in all galled trees examined but not detected in any libraries from ungalled leaves was the Metrosideros version of SMALL AUXIN UPREGULATED (SAUR) 67 which appears to be a marker for leaf-galling in Metrosideros. CONCLUSIONS: We conclude that an auxin response is involved in galling by Metrosideros psyllids. The possibility should therefore be considered that psyllids (like other insects examined) are able to synthesize auxin.


Assuntos
Hemípteros/fisiologia , Ácidos Indolacéticos/metabolismo , Myrtaceae/parasitologia , Reguladores de Crescimento de Plantas/genética , Tumores de Planta/genética , Animais , Arabidopsis/genética , Ontologia Genética , Genes de Insetos , Genes de Plantas , Marcadores Genéticos , Havaí , Hemípteros/genética , Interações Hospedeiro-Parasita , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tumores de Planta/parasitologia , Transcriptoma
18.
Plant Physiol ; 164(2): 548-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24309192

RESUMO

In plants, genes may sustain extensive pleiotropic functional properties by individually affecting multiple, distinct traits. We discuss results from three genome-wide association studies of approximately 400 natural poplar (Populus trichocarpa) accessions phenotyped for 60 ecological/biomass, wood quality, and rust fungus resistance traits. Single-nucleotide polymorphisms (SNPs) in the poplar ortholog of the class III homeodomain-leucine zipper transcription factor gene REVOLUTA (PtREV) were significantly associated with three specific traits. Based on SNP associations with fungal resistance, leaf drop, and cellulose content, the PtREV gene contains three potential regulatory sites within noncoding regions at the gene's 3' end, where alternative splicing and messenger RNA processing actively occur. The polymorphisms in this region associated with leaf abscission and cellulose content are suggested to represent more recent variants, whereas the SNP associated with leaf rust resistance may be more ancient, consistent with REV's primary role in auxin signaling and its functional evolution in supporting fundamental processes of vascular plant development.


Assuntos
Pleiotropia Genética , Técnicas Genéticas , Proteínas de Plantas/genética , Populus/genética , Desequilíbrio de Ligação/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genética
19.
BMC Evol Biol ; 14: 228, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403617

RESUMO

BACKGROUND: Some clover species, particularly Trifolium subterraneum, have previously been reported to have highly unusual plastomes, relative to closely related legumes, enlarged with many duplications, gene losses and the presence of DNA unique to Trifolium, which may represent horizontal transfer. In order to pinpoint the evolutionary origin of this phenomenon within the genus Trifolium, we sequenced and assembled the plastomes of eight additional Trifolium species widely sampled from across the genus. RESULTS: The Trifolium plastomes fell into two groups: those of Trifolium boissieri, T. strictum and T. glanduliferum (representing subgenus Chronosemium and subg. Trifolium section Paramesus) were tractable, assembled readily and were not unusual in the general context of Fabeae plastomes. The other Trifolium species ("core Trifolium") proved refractory to assembly mainly because of numerous short duplications. These species form a single clade, which we call the "refractory clade" (comprising subg, Trifolium sections Lupinaster, Trifolium, Trichocephalum, Vesicastrum and Trifoliastrum). The characteristics of the refractory clade are the presence of numerous short duplications and 7-15% longer genomes than the tractable species. Molecular dating estimates that the origin of the most recent common ancestor (MRCA) of the refractory clade is approximately 13.1 million years ago (MYA). This is considerably younger than the estimated MRCA ages of Trifolium (c. 18.6 MYA) and Trifolium subg. Trifolium (16.1 MYA). CONCLUSIONS: We conclude that the unusual repetitive plastome type previously characterized in Trifolium subterraneum had a single origin within Trifolium and is characteristic of most (but not all) species of subgenus Trifolium. It appears that an ancestral plastome within Trifolium underwent an evolutionary change resulting in plastomes that either actively promoted, were permissive to, or were unable to control, duplications within the genome. The precise mechanism of this important change in the mode and tempo of plastome evolution deserves further investigation.


Assuntos
Genomas de Plastídeos , Trifolium/genética , Evolução Biológica , Mapeamento Cromossômico , Evolução Molecular , Fabaceae/genética , Medicago/genética , Dados de Sequência Molecular , Trifolium/classificação , Trifolium/citologia
20.
New Phytol ; 204(3): 693-703, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25078531

RESUMO

As molecular phylogenetic analyses incorporate ever-greater numbers of loci, cases of cytonuclear discordance - the phenomenon in which nuclear gene trees deviate significantly from organellar gene trees - are being reported more frequently. Plant examples of topological discordance, caused by recent hybridization between extant species, are well known. However, examples of branch-length discordance are less reported in plants relative to animals. We use a combination of de novo assembly and reference-based mapping using short-read shotgun sequences to construct a robust phylogeny of the plastome for multiple individuals of all the common Populus species in North America. We demonstrate a case of strikingly high plastome divergence, in contrast to little nuclear genome divergence, in two closely related balsam poplars, Populus balsamifera and Populus trichocarpa (Populus balsamifera ssp. trichocarpa). Previous studies with nuclear loci indicate that the two species (or subspecies) diverged since the late Pleistocene, whereas their plastomes indicate deep divergence, dating to at least the Pliocene (6-7 Myr ago). Our finding is in marked contrast to the estimated Pleistocene divergence of the nuclear genomes, previously calculated at 75 000 yr ago, suggesting plastid capture from a 'ghost lineage' of a now-extinct North American poplar.


Assuntos
Filogenia , Populus/genética , Sequência de Bases , Canadá , Demografia , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade da Espécie , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA