Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(7): 2748-2754, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35343692

RESUMO

The transient optical response of plasmonic nanostructures has recently been the focus of extensive research. Accurate prediction of the ultrafast dynamics following excitation of hot electrons by ultrashort laser pulses is of major relevance in a variety of contexts from the study of light harvesting and photocatalytic processes to nonlinear nanophotonics and the all-optical modulation of light. So far, all studies have assumed the correspondence between the temporal evolution of the dynamic optical signal, retrieved by transient absorption spectroscopy, and that of the photoexcited hot electrons, described in terms of their temperature. Here, we show both theoretically and experimentally that this correspondence does not hold under a nonperturbative excitation regime. Our results indicate that the main mechanism responsible for the breaking of the correspondence between electronic and optical dynamics is universal in plasmonics, being dominated by the nonlinear smearing of the Fermi-Dirac occupation probability at high hot-electron temperatures.

2.
Light Sci Appl ; 13(1): 204, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179544

RESUMO

Switching of light polarization on the sub-picosecond timescale is a crucial functionality for applications in a variety of contexts, including telecommunications, biology and chemistry. The ability to control polarization at ultrafast speed would pave the way for the development of unprecedented free-space optical links and of novel techniques for probing dynamical processes in complex systems, as chiral molecules. Such high switching speeds can only be reached with an all-optical paradigm, i.e., engineering active platforms capable of controlling light polarization via ultrashort laser pulses. Here we demonstrate giant modulation of dichroism and birefringence in an all-dielectric metasurface, achieved at low fluences of the optical control beam. This performance, which leverages the many degrees of freedom offered by all-dielectric active metasurfaces, is obtained by combining a high-quality factor nonlocal resonance with the giant third-order optical nonlinearity dictated by photogenerated hot carriers at the semiconductor band edge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA