Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mass Spectrom Rev ; 42(4): 1244-1260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34841547

RESUMO

The present review aims to collect the published literature pertaining the recognition of isobaric compounds (isomers or stereoisomers) using the features of tandem mass spectrometry (MS) experiments without any chromatographic separation or chemical modification (derivatization or isotopic enrichment) of the analytes. MS/MS methods possess high selectivity, wide dynamic range and high throughput capabilities. Generally, tandem MS has limited capability for distinguishing isomers that fragment similarly. However, some MS/MS methods have been developed and positively applied to isomers discrimination. Among the literature on this topic, the applications that fit on the review subject can be summarized as follow: (1) chiral discrimination by the kinetic method, (2) the use energy-resolved tandem mass spectra and the survival yield (SY) representation, (3) the kinetics evaluation of the ion-molecule interaction and (4) the postprocessing mathematical algorithm to resolve the isomers in MS/MS signal.

2.
Mass Spectrom Rev ; 42(3): 984-1007, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34558100

RESUMO

Amylin (islet amyloid polypeptide [IAPP]) is a neuroendocrine hormone synthesized with insulin in the beta cells of pancreatic islets. The two hormones act in different ways: in fact insulin triggers glucose uptake in muscle and liver cells, removing glucose from the bloodstream and making it available for energy use and storage, while amylin regulates glucose homeostasis. Aside these positive physiological aspects, human amyloid polypeptide (hIAPP) readily forms amyloid in vitro. Amyloids are aggregates of proteins and in the human body amyloids are considered responsible of the development of various diseases. These aspects have been widely described and discussed in literature and to give a view of the highly complexity of this biochemical behavior the different physical, chemical, biological and medical aspects are shortly described in this review. It is strongly affected by the presence on metal ions, responsible for or inhibiting the formation of fibrils. Mass spectrometry resulted (and still results) to be a particularly powerful tool to obtain valid and effective experimental data to describe the hIAPP behavior. Aside classical approaches devoted to investigation on metal ion-hIAPP structures, which reflects on the identification of metal-protein interaction site(s) and of possible metal-induced conformational changes of the protein, interesting results have been obtained by ion mobility mass spectrometry, giving, on the basis of collisional cross-section data, information on both the oligomerization processes and the conformation changes. Laser ablation electrospray ionization-ion mobility spectrometry-mass spectrometry (LAESI-IMS-MS), allowed to obtain information on the binding stoichiometry, complex dissociation constant, and the oxidation state of the copper for the amylin-copper interaction. Alternatively to inorganic ions, small organic molecules have been tested by ESI-IMS-MS as inhibitor of amyloid assembly. Also in this case the obtained data demonstrate the validity of the ESI-IMS-MS approach as a high-throughput screen for inhibitors of amyloid assembly, providing valid information concerning the identity of the interacting species, the nature of binding and the effect of the ligand on protein aggregation. Effects of Cu2+ and Zn2+ ions in the degradation of human and murine IAPP by insulin-degrading enzyme were studied by liquid chromatography/mass spectrometry (LC/MS). The literature data show that mass spectrometry is a highly valid and effective tool in the study of the amylin behavior, so to individuate medical strategies to avoid the undesired formation of amyloids in in vivo conditions.


Assuntos
Insulinas , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Camundongos , Humanos , Animais , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Cobre/química , Cobre/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Amiloide/química , Amiloide/metabolismo , Glucose
3.
Int J Cancer ; 153(2): 437-449, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-36815540

RESUMO

Rectal cancer (RC) accounts for one-third of colorectal cancers (CRC), and 40% of these are locally advanced rectal cancers (LARC). The use of neoadjuvant chemoradiotherapy (nCRT) significantly reduces the rate of local recurrence compared to adjuvant therapy or surgery alone. However, after nCRT, up to 40%-60% of patients show a poor pathological response, while only about 20% achieve a pathological complete response. In this scenario, the identification of novel predictors of tumor response to nCRT is urgently needed to reduce LARC mortality and to spare poorly responding patients from unnecessary treatments. Therefore, by combining gene and microRNA expression datasets with proteomic data from LARC patients, we developed an integrated network centered on seven hub-genes putatively involved in the response to nCRT. In an independent validation cohort of LARC patients, we confirmed that differential expression of NFKB1, TRAF6 and STAT3 is correlated with the response to nCRT. In addition, the functional enrichment analysis also revealed that these genes are strongly related to hallmarks of cancer and inflammation, whose dysfunction may causatively affect LARC patient's response to nCRT. Furthermore, by constructing the transcription factor-module network, we hypothesized a protective role of POU2F3 gene, which could be used as a new drug target in LARC patients. Finally, we identified and tested in vitro entinostat, a histone deacetylase inhibitor, as a chemical compound that could be combined with a classical therapeutic regimen in order to design more efficient therapeutic strategies in LARC management.


Assuntos
Antineoplásicos , Neoplasias Retais , Humanos , Fluoruracila , Resultado do Tratamento , Multiômica , Proteômica , Quimiorradioterapia , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Neoplasias Retais/patologia , Terapia Neoadjuvante , Fatores de Transcrição de Octâmero
4.
Mass Spectrom Rev ; 38(1): 112-146, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423209

RESUMO

In the last decade, mass spectrometry has been widely employed in the study of diabetes. This was mainly due to the development of new, highly sensitive, and specific methods representing powerful tools to go deep into the biochemical and pathogenetic processes typical of the disease. The aim of this review is to give a panorama of the scientifically valid results obtained in this contest. The recent studies on glycation processes, in particular those devoted to the mechanism of production and to the reactivity of advanced glycation end products (AGEs, AGE peptides, glyoxal, methylglyoxal, dicarbonyl compounds) allowed to obtain a different view on short and long term complications of diabetes. These results have been employed in the research of effective markers and mass spectrometry represented a precious tool allowing the monitoring of diabetic nephropathy, cardiovascular complications, and gestational diabetes. The same approaches have been employed to monitor the non-insulinic diabetes pharmacological treatments, as well as in the discovery and characterization of antidiabetic agents from natural products. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 38:112-146, 2019.


Assuntos
Complicações do Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Animais , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Complicações do Diabetes/sangue , Complicações do Diabetes/diagnóstico , Diabetes Mellitus/sangue , Diabetes Mellitus/diagnóstico , Produtos Finais de Glicação Avançada/análise , Produtos Finais de Glicação Avançada/sangue , Glicosilação , Humanos , Espectrometria de Massas/instrumentação , Modelos Moleculares
5.
Ther Drug Monit ; 41(1): 1-10, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30422961

RESUMO

Alternatively to the well-consolidated liquid chromatography coupled to tandem mass spectrometry approach used for the evaluation of anticancer drug concentrations in treated patients, new mass spectrometric methods have been proposed and tested recently. They exhibited faster analysis time and, at first sight, simpler instrumental approaches. However, results obtained by these methods require an in-depth evaluation, because of their strong dependence on the experimental set-up. In this short review, the quantification of irinotecan, sunitinib, and 6-α-hydroxy paclitaxel (the main metabolite of paclitaxel) by laser desorption ionization techniques (matrix-assisted laser desorption/ionization, nanostructure-assisted laser desorption/ionization, and surface-assisted laser desorption/ionization) is reported and discussed, showing the advantages but also the drawbacks of the methods. The matrix-assisted laser desorption/ionization approach led to the most reliable results, and the cross-validation for the quantitative analysis of irinotecan indicates that this method can be fruitfully used for therapeutic drug monitoring and pharmacokinetic studies. Another recently proposed technique, paper spray mass spectrometry, has been tested for the quantitative measurement of imatinib in plasma samples. Even if the approach is, at first sight, really simple, the parameterization of the analytical and instrumental aspects has required many efforts to reach satisfactory results. What it should be expected in the future is the evaluation of these methods, not only in scientific environments dedicated to instrument development, but also in clinical chemistry laboratories, to evaluate their effectiveness and to give new and valid tools for TDM and for other qualitative or quantitative measurements of biomedical interest.


Assuntos
Antineoplásicos/farmacocinética , Neoplasias/metabolismo , Espectrometria de Massas em Tandem/métodos , Antineoplásicos/uso terapêutico , Cromatografia Líquida/métodos , Monitoramento de Medicamentos/métodos , Humanos , Neoplasias/tratamento farmacológico , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
J Cell Physiol ; 233(8): 5937-5948, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29244195

RESUMO

Three-dimensional (3D) cancer models are overlooking the scientific landscape with the primary goal of bridging the gaps between two-dimensional (2D) cell lines, animal models and clinical research. Here, we describe an innovative tissue engineering approach applied to colorectal cancer (CRC) starting from decellularized human biopsies in order to generate an organotypic 3D-bioactive model. This in vitro 3D system recapitulates the ultrastructural environment of native tissue as demonstrated by histology, immunohistochemistry, immunofluorescence and scanning electron microscopy analyses. Mass spectrometry of proteome and secretome confirmed a different stromal composition between decellularized healthy mucosa and CRC in terms of structural and secreted proteins. Importantly, we proved that our 3D acellular matrices retained their biological properties: using CAM assay, we observed a decreased angiogenic potential in decellularized CRC compared with healthy tissue, caused by direct effect of DEFA3. We demonstrated that following a 5 days of recellularization with HT-29 cell line, the 3D tumor matrices induced an over-expression of IL-8, a DEFA3-mediated pathway and a mandatory chemokine in cancer growth and proliferation. Given the biological activity maintained by the scaffolds after decellularization, we believe this approach is a powerful tool for future pre-clinical research and screenings.


Assuntos
Neoplasias Colorretais/patologia , Matriz Extracelular/metabolismo , Mucosa Intestinal/patologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Microambiente Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Embrião de Galinha , Membrana Corioalantoide , Detergentes/química , Células HT29 , Humanos , Interleucina-8/metabolismo , Microscopia Eletrônica de Varredura , Modelos Biológicos , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , alfa-Defensinas/metabolismo
7.
Mass Spectrom Rev ; 36(2): 213-251, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26280357

RESUMO

In the history of medicine, nature has represented the main source of medical products. Indeed, the therapeutic use of plants certainly goes back to the Sumerian and Hippocrates and nowadays nature still represents the major source for new drugs discovery. Moreover, in the cancer treatment, drugs are either natural compounds or have been developed from naturally occurring parent compounds firstly isolated from plants and microbes from terrestrial and marine environment. A critical element of an anticancer drug is represented by its severe toxicities and, after administration, the drug concentrations have to remain in an appropriate range to be effective. Anyway, the drug dosage defined during the clinical studies could be inappropriate for an individual patient due to differences in drug absorption, metabolism and excretion. For this reason, personalized medicine, based on therapeutic drug monitoring (TDM), represents one of most important challenges in cancer therapy. Mass spectrometry sensitivity, specificity and fastness lead to elect this technique as the Golden Standard for pharmacokinetics and drug metabolism studies therefore for TDM. This review focuses on the mass spectrometry-based methods developed for pharmacokinetic quantification in human plasma of anticancer drugs derived from natural sources and already used in clinical practice. Particular emphasis was placed both on the pre-analytical and analytical steps, such as: sample preparation procedures, sample size required by the analysis and the limit of quantification of drugs and metabolites to give some insights on the clinical practice applicability. © 2015 Wiley Periodicals, Inc. Mass Spec Rev. 36:213-251, 2017.


Assuntos
Antineoplásicos/farmacocinética , Produtos Biológicos/farmacocinética , Monitoramento de Medicamentos/métodos , Espectrometria de Massas/métodos , Animais , Antineoplásicos/sangue , Produtos Biológicos/sangue , Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Monitoramento de Medicamentos/instrumentação , Desenho de Equipamento , Humanos , Espectrometria de Massas/instrumentação , Neoplasias/tratamento farmacológico
8.
J Nat Prod ; 81(11): 2338-2347, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30372064

RESUMO

A hypothesis on the peculiar pharmacological behavior of biologically active natural compounds is based on the occurrence of molecular interactions originating from the high complexity of the natural matrix, following the rules of supramolecular chemistry. In this context, some investigations were performed to establish unequivocally the presence of caffeine/catechin complexes in green tea extracts (GTEs). 1H NMR spectroscopy was utilized to compare profiles from GTEs with caffeine/catechin mixtures in different molar ratios, showing that peaks related to caffeine in GTEs are generally upfield shifted compared to those of free caffeine. On the other hand, ESIMS experiments performed on GTE, by means of precursor ion scan and neutral loss scan experiments, proved unequivocally the presence of caffeine/catechin complexes. Further investigations were performed by an LC-MS method operating at high-resolution conditions. The reconstructed ion chromatograms of the exact mass ions corresponding to caffeine/catechin species have been obtained, showing the presence of complexes of caffeine with gallate-type catechins. Furthermore, this last approach evidenced the presence of the same complex with different structures, consequently exhibiting different retention times. Both MSE and product ion MS/MS methods confirm the nature of caffeine/catechin complexes of the detected ions, showing the formation of protonated caffeine.


Assuntos
Cafeína/análise , Camellia sinensis/química , Catequina/análise , Extratos Vegetais/química , Cafeína/química , Catequina/química , Cromatografia Líquida , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
9.
J Cell Physiol ; 232(5): 967-975, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27775168

RESUMO

Colorectal cancer (CRC) whit more than a million of new cases per year is one of the most common registered cancers worldwide with few treatment options especially for advanced and metastatic patients.The tumor microenvironment is composed by extracellular matrix (ECM), cells, and interstitial fluids. Among all these constituents, in the last years an increased interest around the ECM and its potential role in cancer tumorigenesis is arisen. During cancer progression the ECM structure and composition became disorganized, allowing cellular transformation and metastasis. Up to now, the focus has mainly been on the characterization of CRC microenvironment analyzing separately structural ECM components or cell secretome modifications. A more extensive view that interconnects these aspects should be addressed. In this review, biochemical (secretome) and biomechanical (structure and architecture) changes of tumor microenvironment will be discussed, giving suggestions on how these changes can affect cancer cell behavior. J. Cell. Physiol. 232: 967-975, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias Colorretais/patologia , Matriz Extracelular/metabolismo , Microambiente Tumoral , Colo/patologia , Humanos
10.
J Cell Physiol ; 231(4): 915-25, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26379225

RESUMO

Early detection of colorectal cancer (CRC) remains a challenge. It has been highlighted that the pathological alterations within an organ and tissues might be reflected in serum or plasma proteomic/peptidic patterns. The aim of the study was to follow the changes in the plasma peptides associated to colorectal cancer progression by mass spectrometry. This study included 27 adenoma, 67 CRC (n = 33 I-II stage and n = 34 III-IV stage), 23 liver metastasis from CRC patients and 34 subjects disease-free as controls. For plasma peptides analysis, samples purification was performed on the Nanoporous Silica Chips technology followed by matrix-assisted laser desorption/ionisation-time of flight analysis. Since the high complexity of the obtained dataset, multivariate statistical analysis, and discriminant pattern recognition were performed for study groups classification. Forty-four of 88 ionic species were successfully identified as fragments of peptides and proteins physiologically circulating in the blood and belonging to immune and coagulation systems and inflammatory mediators. Many peptides clustered into sets of overlapping sequences with ladder-like truncation clearly associated to proteolytic processes of both endo- and exoproteases activity. Comparing to controls, a different median ion intensity of the group-type fragments distribution was observed. Moreover, the degradation pattern obtained by proteolytic cleavage was different into study groups. This pattern was specific and characteristic of each group: controls, colon tumour disease (including adenoma and CRC), and liver metastasis, revealing a role as biomarker in early diagnosis and prognosis. Our findings highlighted peculiar changes in protease activity characteristic of CRC progression from pre-cancer lesion to metastatic disease. J. Cell. Physiol. 231: 915-925, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Progressão da Doença , Peptídeos/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Análise de Variância , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Anal Bioanal Chem ; 408(23): 6321-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27379390

RESUMO

Colorectal cancer (CRC) is one of the most common tumors in developed countries. The five-year survival rate decreases depending on how advanced the CRC is when first diagnosed. Screening has been proven to greatly reduce mortality from colorectal cancer, but an ideal screening tool is far from being established. Here, we aimed to discover and validate early CRC biomarkers by means of an untargeted/targeted metabolomic approach. A preliminary untargeted analysis of plasma lipids performed on a small patient cohort (30 plasma samples) revealed some alterations that occurred in the presence of this tumor. In particular, medium-chain fatty acids with between six and twelve carbon atoms (C6-C12) were found to be the lipid class that showed the most marked changes upon the development of CRC. In order to evaluate the utility of this lipid class as diagnostic CRC biomarkers, a further study based on a wider cohort of patients (117 plasma samples) was performed. Using a targeted approach, these fatty acids were quantified in plasma samples by means of fast gas chromatography coupled to a time-of-flight analyzer. Plasma samples from patients with CRCs at different tumor stages were analyzed and compared to those from healthy subjects, ulcerative colitis patients, high-grade dysplasia adenoma patients, and breast cancer patients in order to test the specificity and sensitivity of these possible biomarkers. Results revealed significant differences among the considered groups in terms of their C6, C8, C10, and C12 fatty acid plasma concentrations. In particular, receiver operating characteristic (ROC) curves obtained for the C10 fatty acid gave an area under the curve of 0.8195 along with a sensitivity of 87.8 % and a specificity of 80 %, strongly suggesting that it could be a valuable early diagnostic biomarker of CRC.


Assuntos
Neoplasias Colorretais/sangue , Ácidos Decanoicos/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Estudos de Coortes , Neoplasias Colorretais/diagnóstico , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade
12.
Anal Bioanal Chem ; 408(19): 5369-77, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27235158

RESUMO

Irinotecan is a widely used antineoplastic drug, mostly employed for the treatment of colorectal cancer. This drug is a feasible candidate for therapeutic drug monitoring due to the presence of a wide inter-individual variability in the pharmacokinetic and pharmacodynamic parameters. In order to determine the drug concentration during the administration protocol, we developed a quantitative MALDI-MS method using CHCA as MALDI matrix. Here, we demonstrate that MALDI-TOF can be applied in a routine setting for therapeutic drug monitoring in humans offering quick and accurate results. To reach this aim, we cross validated, according to FDA and EMA guidelines, the MALDI-TOF method in comparison with a standard LC-MS/MS method, applying it for the quantification of 108 patients' plasma samples from a clinical trial. Standard curves for irinotecan were linear (R (2) ≥ 0.9842) over the concentration ranges between 300 and 10,000 ng/mL and showed good back-calculated accuracy and precision. Intra- and inter-day precision and accuracy, determined on three quality control levels were always <12.8 % and between 90.1 and 106.9 %, respectively. The cross-validation procedure showed a good reproducibility between the two methods, the percentage differences within 20 % in more than 70 % of the total amount of clinical samples analysed.


Assuntos
Camptotecina/análogos & derivados , Neoplasias Colorretais/sangue , Monitoramento de Medicamentos/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Algoritmos , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Camptotecina/administração & dosagem , Camptotecina/sangue , Camptotecina/farmacocinética , Neoplasias Colorretais/tratamento farmacológico , Humanos , Irinotecano , Taxa de Depuração Metabólica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Eur J Mass Spectrom (Chichester) ; 22(5): 217-228, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27882887

RESUMO

Drug levels in patients' bloodstreams vary among individuals and consequently therapeutic drug monitoring (TDM) is fundamental to controlling the effective therapeutic range. For TDM purposes, different analytical approaches have been used, mainly based on immunoassay, liquid chromatography- ultraviolet, liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. More recently a matrix-assisted laser desorption/ionisation method has been proposed for the determination of irinotecan levels in the plasma of subjects under therapy and this method has been cross- validated by comparison with data achieved by LC-MS/MS. However, to reach an effective point-of-care monitoring of plasma drug concentrations, a TDM platform technology for fast, accurate, low-cost assays is required. In this frame, recently the use of paper spray mass spectrometry, which is becoming a popular and widely employed MS method, has been proposed. In this paper we report the results obtained by the development of a paper spray-based method for quantitative analysis in plasma samples of imatinib, a new generation of anticancer drug. Preliminary experiments showed that poor sensitivity, reproducibility and linear response were obtained by the "classical" paper spray set-up. In order to achieve better results, it was thought of interest to operate in presence of a higher and more homogeneous electrical field. For this aim, a stainless steel needle connected with the high voltage power supply was mounted below the paper triangle. Furthermore, in order to obtain valid quantitative data, we analysed the role of the different equilibria participating to the phenomena occurring in paper spray experiments, depending either on instrumental parameters or on the chemical nature of analyte and solvents. A calibration curve was obtained by spiking plasma samples containing different amounts of imatinib (1) with known amounts of deuterated imatinib (1d3) as internal standard, with molar ratios [1]/[1d3] in the range 0.00-2.00. A quite good linearity was obtained (R2 = 0.975) and some experiments performed on spiked plasma samples with known amounts of 1 confirmed the validity of this method.


Assuntos
Monitoramento de Medicamentos/métodos , Mesilato de Imatinib/sangue , Papel , Testes Imediatos , Manejo de Espécimes/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise Química do Sangue/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Cell Physiol ; 230(8): 1822-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25522009

RESUMO

Preoperative chemoradiotherapy is worldwide accepted as a standard treatment for locally advanced rectal cancer. Current standard of treatment includes administration of ionizing radiation for 45-50.4 Gy in 25-28 fractions associated with 5-fluorouracil administration during radiation therapy. Unfortunately, 40% of patients have a poor or absent response and novel predictive biomarkers are demanding. For the first time, we apply a novel peptidomic methodology and analysis in rectal cancer patients treated with preoperative chemoradiotherapy. Circulating peptides (Molecular Weight <3 kDa) have been harvested from patients' plasma (n = 33) using nanoporous silica chip and analyzed by Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometer. Peptides fingerprint has been compared between responders and non-responders. Random Forest classification selected three peptides at m/z 1082.552, 1098.537, and 1104.538 that were able to correctly discriminate between responders (n = 16) and non-responders (n = 17) before therapy (T0) providing an overall accuracy of 86% and an area under the receiver operating characteristic (ROC) curve of 0.92. In conclusion, the nanoporous silica chip coupled to mass spectrometry method was found to be a realistic method for plasma-based peptide analysis and we provide the first list of predictive circulating biomarker peptides in rectal cancer patients underwent preoperative chemoradiotherapy.


Assuntos
Adenocarcinoma/sangue , Biomarcadores Tumorais/sangue , Quimiorradioterapia , Nanotecnologia/métodos , Terapia Neoadjuvante , Neoplasias Retais/sangue , Adenocarcinoma/terapia , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Resistencia a Medicamentos Antineoplásicos , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Pessoa de Meia-Idade , Peptídeos/sangue , Curva ROC , Neoplasias Retais/terapia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Eur J Mass Spectrom (Chichester) ; 20(6): 437-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25905868

RESUMO

It has been proposed that the primary ionization mechanism occurring in matrix-assisted laser desorption ionization (MALDI) experiments originates from the presence, in the solid-state matrix-analytes sample, of matrix dimers. These species are formed by the interaction of carboxylic groups present in the matrix molecules with the formation of strong hydrogen bonds. Theoretical calculations proved that the laser irradiation of these structures leads to one or two H-bridge cleavages, giving rise to an "open" dimer structure or to disproportionation with the formation of MH(+) and [M-H](-) species. The ions so formed can be considered highly effective in their reaction with analyte ions, leading to their protonation (or deprotonation). To achieve further evidence for these proposals, in the present study the energetics of the reactions of ions from different aromatic carboxylic acids with two amino acids (glycine and lysine) and three multipeptides (gly-gly, gly-gly-gly and gly-gly-gly-gly) was investigated. The lowest ∆G values were obtained for 2,5- dihydroxybenzoic acid, widely employed as the MALDI matrix. Also, for p-nitrobenzoic acid the reaction is slightly exothermic, while for the other aromatic carboxylic acids derivatives positives values of ∆G are present.


Assuntos
Modelos Químicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aminoácidos/química , Ácidos Carboxílicos/química , Nitrobenzoatos , Oligopeptídeos/química , Termodinâmica
16.
Eur J Mass Spectrom (Chichester) ; 20(6): 445-59, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25905869

RESUMO

The development of surface-assisted laser desorption/ionization (SALDI) methodologies in mass spectrometry allows, in principle, the development of new analytical approaches to qualitative and quantitative measurements on small molecules. Some of these methods have been applied to characterize two antineoplastic drugs: irinotecan (1) and sunitinib (2), and also 6-α-hydroxy-paclitaxel (3), the main metabolite of paclitaxel. Three different SALDI approaches have been tested employing nanostructure- assisted laser desorption/ionization (NALDI), carbon nanohorns (NHs) and carbon nanohorns covered by liquid additives. The results so obtained have been compared to those observed under matrix-assisted laser desorption/ionization (MALDI) conditions. Compounds 1 and 2 show the easy formation of protonated molecular species under all the experimental conditions, but the highest absolute intensity was achieved by NALDI. On the contrary, ionic species of low intensity are present for 3, among which are those that exhibit the highest intensity caused by [M+K](+) ions. After a critical evaluation of the obtained data, the linear response of the [M+H](+) ion intensity of 1 versus different deposited sample amounts was investigated, and the best results (R(2) = 0.9889) were obtained under MALDI conditions. The analysis of plasma samples spiked with 1 showed, again, that the MALDI approach was the best one (R(2) = 0.9766). The failure of NALDI measurements could be rationalized by the presence of ion suppression effects.

17.
Transl Res ; 253: 57-67, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36096350

RESUMO

Pancreatic cancer is likely to become one of the leading causes of cancer-related death in many countries within the next decade. Surgery is the potentially curative treatment for pancreatic ductal adenocarcinoma (PDAC), although only 10%-20% of patients have a resectable disease after diagnosis. Despite recent advances in curative surgery the current prognosis ranges from 6% to 10% globally. One of the main issues at the pre-clinical level is the lacking of model which simultaneously reflects the tumour microenvironment (TME) at both structural and cellular levels. Here we describe an innovative tissue engineering approach applied to PDAC starting from decellularized human biopsies in order to generate an organotypic 3D in vitro model. This in vitro 3D system recapitulates the ultrastructural environment of native tissue as demonstrated by histology, immunohistochemistry, immunofluorescence, mechanical analysis, and scanning electron microscopy. Mass spectrometry confirmed a different extracellular matrix (ECM) composition between decellularized healthy pancreas and PDAC by identifying a total of 110 non-redundant differently expressed proteins. Immunofluorescence analyses after 7 days of scaffold recellularization with PANC-1 and AsPC-1 pancreatic cell lines, were performed to assess the biocompatibility of 3D matrices to sustain engraftment, localization and infiltration. Finally, both PANC-1 and AsPC-1 cells cultured in 3D matrices showed a reduced response to treatment with FOLFIRINOX if compared to conventional bi-dimensional culture. Our 3D culture system with patient-derived tissue-specific decellularized ECM better recapitulates the pancreatic cancer microenvironment compared to conventional 2D culture conditions and represents a relevant approach for the study of pancreatic cancer response to chemotherapy agents.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica , Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Matriz Extracelular/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
18.
J Pharm Biomed Anal ; 215: 114762, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35489246

RESUMO

The targeted analysis of free fatty acids (FFAs) is attracting interest since several years with a plenty of studies. However, most of them are devoted to the solely determination of the short-chain fatty acids (SCFAs) arising from the symbiotic gut microbiota metabolism. Recently, the FFAs analysis highlighted changes in the plasma levels of octanoic and decanoic acids (medium-chain fatty acids or MCFAs) may be associated to gastrointestinal diseases, including colorectal cancer (CRC). Then, the simultaneous quantification of both SCFAs and MCFAs could be useful to put in evidence the interconnection between microbiota and metabolic alterations during hosts' disease. To this aim, it was developed an isotopic dilution gas-chromatography coupled mass spectrometry (ID/GC-MS) method for the targeted analysis of both linear and branched FFAs (SCFAs, MCFAs, and LCFAs) in human plasma samples as specific markers for both microbiota and host metabolic alterations. In order to minimize sample manipulation procedures, an efficient, sensible and low time-consuming procedure is presented, which relies in a simple liquid-liquid extraction before the determination of underivatized free acids (FFAs) by Single Ion Monitoring (SIM) acquisition. The reached detection limits (LODs) were less than 100 µg L-1 for most of analytes, except for acetic, hexadecanoic and octadecanoic acids that showed a LOD > 1 mg L-1. Methods accuracy and precision, obtained by the analysis of the FFAs mixtures showed accuracy values between 84% and 100% and precision (RSD %) between 0.1% and 12.4% at the concentration levels tested. The proposed ID/GC-MS method was applied in a case study to evaluate the FFAs as specific markers for both microbiota and host alterations in CRC patients. Obtained results highlight the advantage of present method for its rapidity, simplicity, and robustness.


Assuntos
Neoplasias Colorretais , Ácidos Graxos não Esterificados , Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer , Ácidos Graxos , Ácidos Graxos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos
19.
J Pharm Biomed Anal ; 219: 114926, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35839578

RESUMO

Membrane proteins constitute around 20-30 % of the proteins encoded by mammalian genes, are involved in many cell functions, and represent the majority of drug targets. However, the isolation of membrane proteins is challenging because of their partial hydrophobicity, requiring detergents to extract them from cell membranes and stabilize them in solution. Many commercial kits use this principle, but they are expensive, and their chemical composition is not known. In this work, we propose a fast, detergent-based protocol for the purification of membrane proteins from murine and human cells. This protocol is based on three steps: cell washing to remove cell culture medium proteins, cells permeabilization using digitonin to remove the intracellular components, and cell membranes disruption using Triton X-100 to solubilize membrane proteins and keep them in solution. We measured the total protein yield using our protocol with two different detergent concentrations and compared it to a commercial kit. We further assessed membrane protein enrichment by comparing markers for specific cellular components using SDS-PAGE/western blot and identifying specific proteins by qualitative mass spectrometry. Our protocol led to a final protein yield analogous to the commercial kit and similar membrane protein purity, while resulting significantly cheaper compared to the commercial kit. Furthermore, this process can be applied to a different number and types of cells, resulting scalable, versatile, and robust. The possibility to perform downstream mass spectrometry analysis is of particular importance since it enables the use of "omics" techniques for protein discovery and characterization. Our approach could be used as a starting point for the isolation of membrane proteins for pharmacological and biochemical studies, or for the discovery of new druggable or prognostic markers.


Assuntos
Detergentes , Proteínas de Membrana , Animais , Detergentes/química , Detergentes/farmacologia , Eletroforese em Gel de Poliacrilamida , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mamíferos , Camundongos , Octoxinol
20.
Oncotarget ; 13: 476-489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251495

RESUMO

Recently an enhancement of the sensitivity of colorectal cancer (CRC) cells by 5-fluorouracil (5FU) due to the concurrent treatment with epigallocatechin-3-gallate (EGCG) has been found. In the present paper, to investigate on this aspect, adenocarcinoma cells HT29 were treated with 5FU, EGCG and an equimolar mixture of 5FU and EGCG ([5FU+EGCG]) and cell viability was determined. While 5FU exhibits a clear activity, EGCG alone does not express any activity. However by treating the cells with [5FU+EGCG] a strong effect of EGCG is evidenced: the sensitivity of HT29 cells to 5FU was increased by 12-fold. A simulation of the behavior of [5FU+EGCG] in different compartments of the gastrointestinal digestion model was also performed. 5FU and EGCG solubilized into a mixture of digestive fluids analyzed by mass spectrometry did not lead to signals of 5FU, EGCG and the related complex, while by diluting the solution they become detectable. On the contrary, when 5FU and EGCG are submitted to the step-by-step digestion model procedure, the analysis did not show the presence of 5FU, EGCG and [5FU+EGCG]. This behaviour could be ascribed to the instability of these compounds due to the too severe digestion conditions and/or to the complexity of the matrix which could lead in ESI conditions to the suppression of the signals of the analytes of interest.


Assuntos
Catequina , Fluoruracila , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Sobrevivência Celular , Fluoruracila/farmacologia , Células HT29 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA