Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci Res ; 96(8): 1353-1366, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29732581

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease characterized by progressive motor neuron degeneration in the brain and spinal cord leading to muscle atrophy, paralysis, and death. Mitochondrial dysfunction is a major contributor to motor neuron degeneration associated with ALS progression. Mitochondrial abnormalities have been determined in spinal cords of animal disease models and ALS patients. However, molecular mechanisms leading to mitochondrial dysfunction in sporadic ALS (sALS) patients remain unclear. Also, segmental or regional variation in mitochondrial activity in the spinal cord has not been extensively examined in ALS. In our study, the activity of mitochondrial electron transport chain complex IV was examined in post-mortem gray and white matter of the cervical and lumbar spinal cords from male and female sALS patients and controls. Mitochondrial distribution and density in spinal cord motor neurons, lateral funiculus, and capillaries in gray and white matter were analyzed by immunohistochemistry. Results showed that complex IV activity was significantly decreased only in gray matter in both cervical and lumbar spinal cords from ALS patients. In ALS cervical and lumbar spinal cords, significantly increased mitochondrial density and altered distribution were observed in motor neurons, lateral funiculus, and cervical white matter capillaries. Discrete decreased complex IV activity in addition to changes in mitochondria distribution and density determined in the spinal cord in sALS patients are novel findings. These explicit mitochondrial defects in the spinal cord may contribute to ALS pathogenesis and should be considered in development of therapeutic approaches for this disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Adulto , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Substância Cinzenta/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Substância Branca/patologia
2.
Biol Open ; 7(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30177551

RESUMO

Mitochondrial DNA mutations accumulate with age and may play a role in stem cell aging as suggested by the premature aging phenotype of mitochondrial DNA polymerase gamma (POLG) exonuclease-deficient mice. Therefore, E1A immortalized murine embryonic fibroblasts (MEFs) from POLG exonuclease-deficient and wild-type (WT) mice were constructed. Surprisingly, when some E1A immortalized MEF lines were cultured in pyruvate-containing media they slowly became addicted to the pyruvate. The POLG exonuclease-deficient MEFs were more sensitive to several mitochondrial inhibitors and showed increased reactive oxygen species (ROS) production under standard conditions. When cultured in pyruvate-containing media, POLG exonuclease-deficient MEFs showed decreased oxygen consumption compared to controls. Increased AMP-activated protein kinase (AMPK) signaling and decreased mammalian target of rapamycin (mTOR) signaling delayed aging and influenced mitochondrial function. Therefore, the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, or rapamycin, an mTOR inhibitor, on measures of mitochondrial function were determined. Rapamycin treatment transiently increased respiration only in WT MEFs and, under most conditions, increased ATP levels. Short term AICAR treatment transiently increased ROS production and, under most conditions, decreased ATP levels. Chronic AICAR treatment decreased respiration and ROS production in WT MEFs. These results demonstrate the context-dependent effects of AICAR and rapamycin on mitochondrial function.

3.
Neuromolecular Med ; 19(2-3): 322-344, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28620826

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein accumulation and loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Increased levels of alpha-synuclein have been shown to result in loss of mitochondrial electron transport chain complex I activity leading to increased reactive oxygen species (ROS) production. WT alpha-synuclein was stably overexpressed in human BE(2)-M17 neuroblastoma cells resulting in increased levels of an alpha-synuclein multimer, but no increase in alpha-synuclein monomer levels. Oxygen consumption was decreased by alpha-synuclein overexpression, but ATP levels did not decrease and ROS levels did not increase. Treatment with ferrous sulfate, a ROS generator, resulted in decreased oxygen consumption in both control and alpha-synuclein overexpressing cells. However, this treatment only decreased ATP levels and increased ROS production in the cells overexpressing alpha-synuclein. Similarly, paraquat, another ROS generator, decreased ATP levels in the alpha-synuclein overexpressing cells, but not in the control cells, further demonstrating how alpha-synuclein sensitized the cells to oxidative insult. Proteomic analysis yielded molecular insights into the cellular adaptations to alpha-synuclein overexpression, such as the increased abundance of many mitochondrial proteins. Many amino acids and citric acid cycle intermediates and their ester forms were individually supplemented to the cells with L-serine, L-proline, L-aspartate, or L-glutamine decreasing ROS production in oxidatively stressed alpha-synuclein overexpressing cells, while diethyl oxaloacetate or L-valine supplementation increased ATP levels. These results suggest that dietary supplementation with individual metabolites could yield bioenergetic improvements in PD patients to delay loss of dopaminergic neurons.


Assuntos
Aminoácidos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Meios de Cultura/farmacologia , Avaliação Pré-Clínica de Medicamentos , Compostos Ferrosos/farmacologia , Humanos , Mitocôndrias/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Estresse Oxidativo , Consumo de Oxigênio/efeitos dos fármacos , Paraquat/farmacologia , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA