RESUMO
Variable domain (VL) gene segments exhibit variable tendencies to be associated with light chain amyloidosis (AL). While few of them are very frequent in AL and give rise to most of the amyloidogenic light chains compiled at the sequence databases, other are rarely found among the AL cases. To analyze to which extent these tendencies depend on folding stability and aggregation propensity of the germline VL protein, we characterized VL proteins encoded by four AL-associated germline gene segments and one not associated to AL. We found that the AL-associated germline rVL proteins differ widely in conformational stability and propensity to in vitro amyloid aggregation. While in vitro the amyloid formation kinetics of these proteins correlate well with their folding stabilities, the folding stability does not clearly correlate with their germline's frequencies in AL. We conclude that the association of the VL genes segments to amyloidosis is not determined solely by the folding stability and aggregation propensity of the germline VL protein. Other factors, such as the frequencies of destabilizing mutations and susceptibility to proteolysis, must play a role in determining the light chain amyloidogenicity.
Assuntos
Amiloide/genética , Amiloidose/genética , Região Variável de Imunoglobulina/genética , Agregação Patológica de Proteínas/genética , Sequência de Aminoácidos , Mutação em Linhagem Germinativa , Humanos , Microscopia Eletrônica de Transmissão , Domínios Proteicos , Estabilidade Proteica , Alinhamento de Sequência , Espectrometria de FluorescênciaRESUMO
BACKGROUND: M1 macrophages involved in pro-inflammatory processes can be induced by low-density lipoproteins (LDL), giving rise to foam cells. In the atheroma plaque, it has been identified that males present more advanced lesions associated with infiltration. Therefore, our study aims to investigate sex-related changes in the transcriptome of M1 macrophages during the internalization process of LDL particles. METHODS: Peripheral blood mononuclear cells (PBMCs) from healthy male and female subjects were separated using Hystopaque, and monocytes were isolated from PBMCs using a positive selection of CD14+ cells. Cells were stimulated with LDL 10 µg/mL, and the transcriptional profile of M1 macrophages performed during LDL internalization was determined using a Clariom D platform array. RESULTS: Chromosome Y influences the immune system and inflammatory responses in males expressing 43% of transcripts in response to LDL treatment. Males and females share 15 transcripts, where most correspond to non-coding elements involved in oxidative stress and endothelial damage. CONCLUSIONS: During LDL internalization, male monocyte-derived M1 macrophages display more marked proinflammatory gene expression. In contrast, female M1 macrophages display a more significant number of markers associated with cell damage.
RESUMO
Acute respiratory infections (ARIs) are a major cause of morbidity and mortality among children. The causative pathogens show geographic and seasonal variations. We retrospectively evaluated the frequency and seasonality of respiratory pathogens in children and adolescents (age: 0-19 years) with ARIs treated between January 1, 2021, and March 31, 2022, at a single center in Mexico. Out of 2400 patients, 1,603 were diagnosed with SARS-CoV-2 infection and 797 were diagnosed with other common respiratory pathogens (CRPs). Of the 797 patients, 632 were infected with one CRP and 165 with > 2 CRPs. Deaths occurred only in SARS-CoV-2-infected patients. Rhinovirus/Enterovirus, respiratory syncytial virus B, and parainfluenza virus 3 were the most prevalent in cases with single and multiple infections. CRP showed a high frequency between autumn and winter of 2021, with higher incidence of hospitalization compared to COVID-19. The main comorbidities were immunosuppression, cardiovascular disease (CD), and asthma. The frequency of CRPs showed a downward trend throughout the first half of 2021. CRPs increased in single- and co-infection cases between the fourth and fifth waves of COVID-19, probably due to decreased nonpharmaceutical interventions and changes in diagnostic tests. Age, cyanosis (symptom), and immunosuppression (comorbidity) were found to differentiate between SARS-CoV-2 infection and CRP infection.
Assuntos
COVID-19 , Infecções Respiratórias , Humanos , Criança , Adolescente , Lactente , Recém-Nascido , Pré-Escolar , Adulto Jovem , Adulto , México/epidemiologia , Estudos Retrospectivos , Centros de Atenção Terciária , COVID-19/epidemiologia , COVID-19/complicaçõesRESUMO
Background: The advance of the COVID-19 pandemic and spread of SARS-CoV-2 around the world has generated the emergence of new genomic variants. Those variants with possible clinical and therapeutic implications have been classified as variants of concern (VOCs) and variants of interest (VOIs). Objective: This study aims to describe the COVID-19 pandemic and build the evolutionary and demographic dynamics of SARS-CoV-2 populations in Mexico, with emphasis on VOCs. Methods: 30,645 complete genomes of SARS-CoV-2 from Mexico were obtained from GISAID databases up to January 25, 2022. A lineage assignment and phylogenetic analysis was completed, and demographic history for Alpha, Gamma, Delta and Omicron VOCs, and the Mexican variant (B.1.1.519) was performed. Results: 148 variants were detected among the 30,645 genomes analyzed with the Delta variant being the most prevalent in the country, representing 49.7% of all genomes. Conclusion: The COVID-19 pandemic in Mexico was caused by several introductions of SARS-CoV-2, mainly from the United States of America and Europe, followed by local transmission. Regional molecular epidemiological surveillance must implement to detect emergence, introductions and spread of new variants with biologically important mutations.
RESUMO
The activation of Nuclear Factor, Erythroid 2 Like 2 - Kelch Like ECH Associated Protein 1 (NRF2-KEAP1) signaling pathway plays a critical dual role by either protecting or promoting the carcinogenesis process. However, its activation or nuclear translocation during hepatocellular carcinoma (HCC) progression has not been addressed yet. This study characterizes the subcellular localization of both NRF2 and KEAP1 during diethylnitrosamine-induced hepatocarcinogenesis in the rat. NRF2-KEAP1 pathway was continuously activated along with the increased expression of its target genes, namely Nqo1, Hmox1, Gclc, and Ptgr1. Similarly, the nuclear translocation of NRF2, MAF, and KEAP1 increased in HCC cells from weeks 12 to 22 during HCC progression. Likewise, colocalization of NRF2 with KEAP1 was higher in the cell nuclei of HCC neoplastic nodules than in surrounding cells. Moreover, immunofluorescence analyses revealed that the interaction of KEAP1 with filamentous Actin was disrupted in HCC cells. This disruption may be contributing to the release and nuclear translocation of NRF2 since the cortical actin cytoskeleton serves as anchoring of KEAP1. In conclusion, this evidence indicates that NRF2 is progressively activated and promotes the progression of experimental HCC.
Assuntos
Carcinoma Hepatocelular/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/veterinária , Núcleo Celular/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Dietilnitrosamina/toxicidade , Progressão da Doença , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/veterinária , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteínas Proto-Oncogênicas c-maf/genética , Proteínas Proto-Oncogênicas c-maf/metabolismo , Ratos , Ratos Endogâmicos F344RESUMO
BACKGROUND: We analyzed the demographic, clinical, and diagnostic data of children and adolescents in Mexico, from the first case of coronavirus disease (COVID-19) to 28 February 2022. METHODS: Using the open databases of the Ministry of Health and a tertiary pediatric hospital, we obtained demographic and clinical data from the beginning of the COVID-19 pandemic until 28 February 2022. In addition, quantitative reverse-transcription polymerase chain reaction outputs were used to determine the viral load, and structural protein-based serology was performed to evaluate IgG antibody levels. RESULTS: Of the total 437,832 children and adolescents with COVID-19, 1187 died. Of these patients, 1349 were admitted to the Hospital Infantil de Mexico Federico Gómez, and 11 died. Obesity, asthma, and immunosuppression were the main comorbidities, and fever, cough, and headache were the main symptoms. In this population, many patients have a low viral load and IgG antibody levels. CONCLUSION: During the first 2 years of the COVID-19 pandemic in Mexico, children and adolescents had low incidence and mortality. They are a heterogeneous population, but many patients had comorbidities such as obesity, asthma, and immunosuppression; symptoms such as fever, cough, and headache; and low viral load and IgG antibodies.
Assuntos
Asma , COVID-19 , Humanos , Adolescente , Criança , Pandemias , COVID-19/diagnóstico , COVID-19/epidemiologia , Tosse , México/epidemiologia , SARS-CoV-2 , Imunoglobulina G , Febre , Cefaleia , Obesidade , Asma/epidemiologiaRESUMO
End-point RT-PCR is a suitable alternative diagnostic technique since it is cheaper than RT-qPCR tests and can be implemented on a massive scale in low- and middle-income countries. In this work, a bioinformatic approach to guide the design of PCR primers was developed, and an alternative diagnostic test based on end-point PCR was designed. End-point PCR primers were designed through conservation analysis based on kmer frequency in SARS-CoV-2 and human respiratory pathogen genomes. Highly conserved regions were identified for primer design, and the resulting PCR primers were used to amplify 871 nasopharyngeal human samples with a previous RT-qPCR based SARS-CoV-2 diagnosis. The diagnostic test showed high accuracy in identifying SARS-CoV-2-positive samples including B.1.1.7, P.1, B.1.427/B.1.429 and B.1.617.2/ AY samples with a detection limit of 7.2 viral copies/µL. In addition, this test could discern SARS-CoV-2 infection from other viral infections with COVID-19-like symptomatology. The designed end-point PCR diagnostic test to detect SARS-CoV-2 is a suitable alternative to RT-qPCR. Since the proposed bioinformatic approach can be easily applied in thousands of viral genomes and over highly divergent strains, it can be used as a PCR design tool as new SARS-CoV-2 variants emerge. Therefore, this end-point PCR test could be employed in epidemiological surveillance to detect new SARS-CoV-2 variants as they emerge and propagate.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Humanos , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genéticaRESUMO
Severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 infection in children and adolescents primarily causes mild or asymptomatic coronavirus disease 2019 (COVID-19), and severe illness is mainly associated with comorbidities. However, the worldwide prevalence of COVID-19 in this population is only 1%-2%. In Mexico, the prevalence of COVID-19 in children has increased to 10%. As serology-based studies are scarce, we analyzed the clinical features and serological response (SARS-CoV-2 structural proteins) of children and adolescents who visited the Hospital Infantil de México Federico Gómez (October 2020-March 2021). The majority were 9-year-old children without comorbidities who were treated as outpatients and had mild-to-moderate illness. Children aged 6-10 years and adolescents aged 11-15 years had the maximum number of symptoms, including those with obesity. Nevertheless, children with comorbidities such as immunosuppression, leukemia, and obesity exhibited the lowest antibody response, whereas those aged 1-5 years with heart disease had the highest levels of antibodies. The SARS-CoV-2 spike receptor-binding domain-localized peptides and M and E proteins had the best antibody response. In conclusion, Mexican children and adolescents with COVID-19 represent a heterogeneous population, and comorbidities play an important role in the antibody response against SARS-CoV-2 infection.
Assuntos
COVID-19 , SARS-CoV-2 , Adolescente , Anticorpos Antivirais , COVID-19/epidemiologia , Teste para COVID-19 , Criança , Humanos , México/epidemiologia , Obesidade , Glicoproteína da Espícula de CoronavírusRESUMO
World Health Organization (WHO) has prioritized the infectious emerging diseases such as Coronavirus Disease (COVID-19) in terms of research and development of effective tests, vaccines, antivirals, and other treatments. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the etiological causative agent of COVID-19, is a virus belonging to risk group 3 that requires Biosafety Level (BSL)-3 laboratories and the corresponding facilities for handling. An alternative to these BSL-3/-4 laboratories is to use a pseudotyped virus that can be handled in a BSL-2 laboratory for study purposes. Recombinant Vesicular Stomatitis Virus (VSV) can be generated with complementary DNA from complete negative-stranded genomic RNA, with deleted G glycoprotein and, instead, incorporation of other fusion protein, like SARS-CoV-2 Spike (S protein). Accordingly, it is called pseudotyped VSV-SARS-CoV-2 S. In this review, we have described the generation of pseudotyped VSV with a focus on the optimization and application of pseudotyped VSV-SARS-CoV-2 S. The application of this pseudovirus has been addressed by its use in neutralizing antibody assays in order to evaluate a new vaccine, emergent SARS-CoV-2 variants (delta and omicron), and approved vaccine efficacy against variants of concern as well as in viral fusion-focused treatment analysis that can be performed under BSL-2 conditions.
RESUMO
In December 2019, the first cases of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified in the city of Wuhan, China. Since then, it has spread worldwide with new mutations being reported. The aim of the present study was to monitor the changes in genetic diversity and track non-synonymous substitutions (dN) that could be implicated in the fitness of SARS-CoV-2 and its spread in different regions between December 2019 and November 2020. We analyzed 2213 complete genomes from six geographical regions worldwide, which were downloaded from GenBank and GISAID databases. Although SARS-CoV-2 presented low genetic diversity, there has been an increase over time, with the presence of several hotspot mutations throughout its genome. We identified seven frequent mutations that resulted in dN substitutions. Two of them, C14408T>P323L and A23403G>D614G, located in the nsp12 and Spike protein, respectively, emerged early in the pandemic and showed a considerable increase in frequency over time. Two other mutations, A1163T>I120F in nsp2 and G22992A>S477N in the Spike protein, emerged recently and have spread in Oceania and Europe. There were associations of P323L, D614G, R203K and G204R substitutions with disease severity. Continuous molecular surveillance of SARS-CoV-2 will be necessary to detect and describe the transmission dynamics of new variants of the virus with clinical relevance. This information is important to improve programs to control the virus.
RESUMO
OBJECTIVES: The aim of this study was to investigate the feasibility of saliva sampling as a non-invasive and safer tool to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to compare its reproducibility and sensitivity with nasopharyngeal swab samples (NPS). The use of sample pools was also investigated. METHODS: A total of 2107 paired samples were collected from asymptomatic healthcare and office workers in Mexico City. Sixty of these samples were also analyzed in two other independent laboratories for concordance analysis. Sample processing and analysis of virus genetic material were performed according to standard protocols described elsewhere. A pooling analysis was performed by analyzing the saliva pool and the individual pool components. RESULTS: The concordance between NPS and saliva results was 95.2% (kappa 0.727, p = 0.0001) and 97.9% without considering inconclusive results (kappa 0.852, p = 0.0001). Saliva had a lower number of inconclusive results than NPS (0.9% vs 1.9%). Furthermore, saliva showed a significantly higher concentration of both total RNA and viral copies than NPS. Comparison of our results with those of the other two laboratories showed 100% and 97% concordance. Saliva samples are stable without the use of any preservative, and a positive SARS-CoV-2 sample can be detected 5, 10, and 15 days after collection when the sample is stored at 4 °C. CONCLUSIONS: The study results indicate that saliva is as effective as NPS for the identification of SARS-CoV-2-infected asymptomatic patients. Sample pooling facilitates the analysis of a larger number of samples, with the benefit of cost reduction.