Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2307143121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38330011

RESUMO

Zinc is an essential nutrient-it is stored during periods of excess to promote detoxification and released during periods of deficiency to sustain function. Lysosome-related organelles (LROs) are an evolutionarily conserved site of zinc storage, but mechanisms that control the directional zinc flow necessary for homeostasis are not well understood. In Caenorhabditis elegans intestinal cells, the CDF-2 transporter stores zinc in LROs during excess. Here, we identify ZIPT-2.3 as the transporter that releases zinc during deficiency; ZIPT-2.3 transports zinc, localizes to the membrane of LROs in intestinal cells, and is necessary for zinc release from LROs and survival during zinc deficiency. In zinc excess and deficiency, the expression levels of CDF-2 and ZIPT-2.3 are reciprocally regulated at the level of mRNA and protein, establishing a fundamental mechanism for directional flow to promote homeostasis. To elucidate how the ratio of CDF-2 and ZIPT-2.3 is altered, we used super-resolution microscopy to demonstrate that LROs are composed of a spherical acidified compartment and a hemispherical expansion compartment. The expansion compartment increases in volume during zinc excess and deficiency. These results identify the expansion compartment as an unexpected structural feature of LROs that facilitates rapid transitions in the composition of zinc transporters to mediate homeostasis, likely minimizing the disturbance to the acidified compartment.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Transporte , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Lisossomos/metabolismo , Organelas/metabolismo , Homeostase , Zinco/metabolismo
2.
J Virol ; 97(4): e0006523, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017532

RESUMO

The establishment of the Orsay virus-Caenorhabditis elegans infection model has enabled the identification of host factors essential for virus infection. Argonautes are RNA interacting proteins evolutionary conserved in the three domains of life that are key components of small RNA pathways. C. elegans encodes 27 argonautes or argonaute-like proteins. Here, we determined that mutation of the argonaute-like gene 1, alg-1, results in a greater than 10,000-fold reduction in Orsay viral RNA levels, which could be rescued by ectopic expression of alg-1. Mutation in ain-1, a known interactor of ALG-1 and component of the RNA-induced silencing complex, also resulted in a significant reduction in Orsay virus levels. Viral RNA replication from an endogenous transgene replicon system was impaired by the lack of ALG-1, suggesting that ALG-1 plays a role during the replication stage of the virus life cycle. Orsay virus RNA levels were unaffected by mutations in the ALG-1 RNase H-like motif that ablate the slicer activity of ALG-1. These findings demonstrate a novel function of ALG-1 in promoting Orsay virus replication in C. elegans. IMPORTANCE All viruses are obligate intracellular parasites that recruit the cellular machinery of the host they infect to support their own proliferation. We used Caenorhabditis elegans and its only known infecting virus, Orsay virus, to identify host proteins relevant for virus infection. We determined that ALG-1, a protein previously known to be important in influencing worm life span and the expression levels of thousands of genes, is required for Orsay virus infection of C. elegans. This is a new function attributed to ALG-1 that was not recognized before. In humans, it has been shown that AGO2, a close relative protein to ALG-1, is essential for hepatitis C virus replication. This demonstrates that through evolution from worms to humans, some proteins have maintained similar functions, and consequently, this suggests that studying virus infection in a simple worm model has the potential to provide novel insights into strategies used by viruses to proliferate.


Assuntos
Proteínas de Caenorhabditis elegans , Nodaviridae , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/virologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Nodaviridae/genética , Nodaviridae/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/genética , Infecções por Vírus de RNA/virologia , Mutação
3.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34649987

RESUMO

Cadmium is an environmental pollutant and significant health hazard that is similar to the physiological metal zinc. In Caenorhabditis elegans, high zinc homeostasis is regulated by the high zinc activated nuclear receptor (HIZR-1) transcription factor. To define relationships between the responses to high zinc and cadmium, we analyzed transcription. Many genes were activated by both high zinc and cadmium, and hizr-1 was necessary for activation of a subset of these genes; in addition, many genes activated by cadmium did not require hizr-1, indicating there are at least two mechanisms of cadmium-regulated transcription. Cadmium directly bound HIZR-1, promoted nuclear accumulation of HIZR-1 in intestinal cells, and activated HIZR-1-mediated transcription via the high zinc activation (HZA) enhancer. Thus, cadmium binding promotes HIZR-1 activity, indicating that cadmium acts as a zinc mimetic to hijack the high zinc response. To elucidate the relationships between high zinc and cadmium detoxification, we analyzed genes that function in three pathways: the pcs-1/phytochelatin pathway strongly promoted cadmium resistance but not high zinc resistance, the hizr-1/HZA pathway strongly promoted high zinc resistance but not cadmium resistance, and the mek-1/sek-1/kinase signaling pathway promoted resistance to high zinc and cadmium. These studies identify resistance pathways that are specific for high zinc and cadmium, as well as a shared pathway.


Assuntos
Cádmio/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Zinco/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Homeostase , Ligantes , Metalotioneína/metabolismo , Ligação Proteica
4.
J Virol ; 96(22): e0121122, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36342299

RESUMO

Viruses utilize host lipids to promote the viral life cycle, but much remains unknown as to how this is regulated. Zinc is a critical element for life, and few studies have linked zinc to lipid homeostasis. We demonstrated that Caenorhabditis elegans infection by Orsay virus is dependent upon lipids and that mutation of the master regulator of lipid biosynthesis, sbp-1, reduced Orsay virus RNA levels by ~236-fold. Virus infection could be rescued by dietary supplementation with lipids downstream of fat-6/fat-7. Mutation of a zinc transporter encoded by sur-7, which suppresses the lipid defect of sbp-1, also rescued Orsay virus infection. Furthermore, reducing zinc levels by chemical chelation in the sbp-1 mutant also increased lipids and rescued Orsay virus RNA levels. Finally, increasing zinc levels by dietary supplementation led to an ~1,620-fold reduction in viral RNA. These findings provide insights into the critical interactions between zinc and host lipids necessary for virus infection. IMPORTANCE Orsay virus is the only known natural virus pathogen of Caenorhabditis elegans, which shares many evolutionarily conserved pathways with humans. We leveraged the powerful genetic tractability of C. elegans to characterize a novel interaction between zinc, lipids, and virus infection. Inhibition of the Orsay virus replication in the sbp-1 mutant animals, explained by the lipid depletion, can be rescued by a genetic and pharmacological approach that reduces the zinc accumulation and rescues the lipid levels in this mutant animal. Interestingly, the human ortholog of sbp-1, srebp-1, has been reported to play a role for virus infection, and zinc has been shown to inhibit the virus replication of multiple viruses. However, the mechanism through which zinc is acting is not well understood. These results suggest that the lipid regulation mediated by zinc may play a relevant role during mammalian virus infection.


Assuntos
Proteínas de Caenorhabditis elegans , Nodaviridae , Viroses , Vírus , Animais , Humanos , Caenorhabditis elegans , Zinco/metabolismo , Nodaviridae/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Vírus/genética , RNA Viral/genética , RNA Viral/metabolismo , Lipídeos , Mamíferos/genética
5.
Arch Biochem Biophys ; 611: 120-133, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27261336

RESUMO

Zinc is an essential metal that is involved in a wide range of biological processes, and aberrant zinc homeostasis is implicated in multiple human diseases. Cadmium is chemically similar to zinc, but it is a nonessential environmental pollutant. Because zinc deficiency and excess are deleterious, animals require homeostatic mechanisms to maintain zinc levels in response to dietary fluctuations. The nematode Caenorhabditis elegans is emerging as a powerful model system to investigate zinc trafficking and homeostasis as well as cadmium toxicity. Here we review genetic and molecular studies that have combined to generate a picture of zinc homeostasis based on the transcriptional control of zinc transporters in intestinal cells. Furthermore, we summarize studies of cadmium toxicity that reveal intriguing parallels with zinc biology.


Assuntos
Cádmio/fisiologia , Caenorhabditis elegans/fisiologia , Zinco/fisiologia , Animais , Transporte Biológico , Linhagem da Célula , Meios de Cultura , Dieta , Relação Dose-Resposta a Droga , Feminino , Proteínas de Fluorescência Verde/química , Homeostase , Masculino , Modelos Biológicos , Mutação , Fenótipo , Espermatozoides/fisiologia , Vulva/fisiologia
6.
J Biol Chem ; 289(27): 19204-17, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24831014

RESUMO

The copper-sensing operon repressor (CsoR) is representative of a major Cu(I)-sensing family of bacterial metalloregulatory proteins that has evolved to prevent cytoplasmic copper toxicity. It is unknown how Cu(I) binding to tetrameric CsoRs mediates transcriptional derepression of copper resistance genes. A phylogenetic analysis of 227 DUF156 protein members, including biochemically or structurally characterized CsoR/RcnR repressors, reveals that Geobacillus thermodenitrificans (Gt) CsoR characterized here is representative of CsoRs from pathogenic bacilli Listeria monocytogenes and Bacillus anthracis. The 2.56 Å structure of Cu(I)-bound Gt CsoR reveals that Cu(I) binding induces a kink in the α2-helix between two conserved copper-ligating residues and folds an N-terminal tail (residues 12-19) over the Cu(I) binding site. NMR studies of Gt CsoR reveal that this tail is flexible in the apo-state with these dynamics quenched upon Cu(I) binding. Small angle x-ray scattering experiments on an N-terminally truncated Gt CsoR (Δ2-10) reveal that the Cu(I)-bound tetramer is hydrodynamically more compact than is the apo-state. The implications of these findings for the allosteric mechanisms of other CsoR/RcnR repressors are discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Óperon/genética , Proteínas Repressoras/metabolismo , Regulação Alostérica/efeitos dos fármacos , Bacillus anthracis/genética , Proteínas de Bactérias/genética , Cobre/farmacologia , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Geobacillus/metabolismo , Modelos Moleculares , Filogenia , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Repressoras/química , Transcrição Gênica
7.
Appl Environ Microbiol ; 74(8): 2398-403, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18310436

RESUMO

Nitrogen-fixing bacteria collectively called rhizobia are adapted to live in polyphenol-rich environments. The mechanisms that allow these bacteria to overcome toxic concentrations of plant polyphenols have not been clearly elucidated. We used a crude extract of polyphenols released from the seed coat of the black bean to simulate a polyphenol-rich environment and analyze the response of the bean-nodulating strain Rhizobium etli CFN42. Our results showed that the viability of the wild type as well as that of derivative strains cured of plasmids p42a, p42b, p42c, and p42d or lacking 200 kb of plasmid p42e was not affected in this environment. In contrast, survival of the mutant lacking plasmid p42f was severely diminished. Complementation analysis revealed that the katG gene located on this plasmid, encoding the only catalase present in this bacterium, restored full resistance to testa polyphenols. Our results indicate that oxidation of polyphenols due to interaction with bacterial cells results in the production of a high quantity of H(2)O(2), whose removal by the katG-encoded catalase plays a key role for cell survival in a polyphenol-rich environment.


Assuntos
Proteínas de Bactérias/fisiologia , Catalase/fisiologia , Flavonoides/toxicidade , Viabilidade Microbiana , Fenóis/toxicidade , Plasmídeos , Rhizobium etli/enzimologia , Rhizobium etli/fisiologia , Proteínas de Bactérias/genética , Catalase/genética , Contagem de Colônia Microbiana , Fabaceae/microbiologia , Flavonoides/metabolismo , Teste de Complementação Genética , Fenóis/metabolismo , Extratos Vegetais/toxicidade , Polifenóis , Rhizobium etli/genética
8.
Microbiologyopen ; 7(3): e00573, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29280343

RESUMO

Copper (Cu) is an essential micronutrient for all aerobic forms of life. Its oxidation states (Cu+ /Cu2+ ) make this metal an important cofactor of enzymes catalyzing redox reactions in essential biological processes. In gram-negative bacteria, Cu uptake is an unexplored component of a finely regulated trafficking network, mediated by protein-protein interactions that deliver Cu to target proteins and efflux surplus metal to avoid toxicity. Rhizobium etliCFN42 is a facultative symbiotic diazotroph that must ensure its appropriate Cu supply for living either free in the soil or as an intracellular symbiont of leguminous plants. In crop fields, rhizobia have to contend with copper-based fungicides. A detailed deletion analysis of the pRet42e (505 kb) plasmid from an R. etli mutant with enhanced CuCl2 tolerance led us to the identification of the ropAe gene, predicted to encode an outer membrane protein (OMP) with a ß-barrel channel structure that may be involved in Cu transport. In support of this hypothesis, the functional characterization of ropAe revealed that: (I) gene disruption increased copper tolerance of the mutant, and its complementation with the wild-type gene restored its wild-type copper sensitivity; (II) the ropAe gene maintains a low basal transcription level in copper overload, but is upregulated when copper is scarce; (III) disruption of ropAe in an actP (copA) mutant background, defective in copper efflux, partially reduced its copper sensitivity phenotype. Finally, BLASTP comparisons and a maximum likelihood phylogenetic analysis highlight the diversification of four RopA paralogs in members of the Rhizobiaceae family. Orthologs of RopAe are highly conserved in the Rhizobiales order, poorly conserved in other alpha proteobacteria and phylogenetically unrelated to characterized porins involved in Cu or Mn uptake.


Assuntos
Cobre/metabolismo , Porinas/genética , Porinas/metabolismo , Rhizobium etli/genética , Rhizobium etli/metabolismo , Transporte Biológico , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Teste de Complementação Genética
9.
Microbiologyopen ; 6(4)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28217917

RESUMO

The ubiquitous cytoplasmic membrane copper transporting P1B-1 and P1B-3 -type ATPases pump out Cu+ and Cu2+ , respectively, to prevent cytoplasmic accumulation and avoid toxicity. The presence of five copies of Cu-ATPases in the symbiotic nitrogen-fixing bacteria Sinorhizobium meliloti is remarkable; it is the largest number of Cu+ -transporters in a bacterial genome reported to date. Since the prevalence of multiple Cu-ATPases in members of the Rhizobiales order is unknown, we performed an in silico analysis to understand the occurrence, diversity and evolution of Cu+ -ATPases in members of the Rhizobiales order. Multiple copies of Cu-ATPase coding genes (2-8) were detected in 45 of the 53 analyzed genomes. The diversity inferred from a maximum-likelihood (ML) phylogenetic analysis classified Cu-ATPases into four monophyletic groups. Each group contained additional subtypes, based on the presence of conserved motifs. This novel phylogeny redefines the current classification, where they are divided into two subtypes (P1B-1 and P1B-3 ). Horizontal gene transfer (HGT) as well as the evolutionary dynamic of plasmid-borne genes may have played an important role in the functional diversification of Cu-ATPases. Homologous cytoplasmic and periplasmic Cu+ -chaperones, CopZ, and CusF, that integrate a CopZ-CopA-CusF tripartite efflux system in gamma-proteobacteria and archeae, were found in 19 of the 53 surveyed genomes of the Rhizobiales. This result strongly suggests a high divergence of CopZ and CusF homologs, or the existence of unexplored proteins involved in cellular copper transport.


Assuntos
Proteínas de Bactérias/genética , ATPases Transportadoras de Cobre/genética , Filogenia , Rhizobiaceae/classificação , Rhizobiaceae/enzimologia , Biologia Computacional , Evolução Molecular , Transferência Genética Horizontal , Rhizobiaceae/genética , Homologia de Sequência
10.
Metallomics ; 6(10): 1808-15, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25054342

RESUMO

Manganese (Mn(2+)) plays a key role in important cellular functions such as oxidative stress response and bacterial virulence. The mechanisms of Mn(2+) homeostasis are not fully understood, there are few data regarding the functional and taxonomic diversity of Mn(2+) exporters. Our recent phylogeny of the cation diffusion facilitator (CDF) family of transporters classified the bacterial Mn(2+)-CDF transporters characterized to date, Streptococcus pneumoniae MntE and Deinococcus radiodurans DR1236, into two monophyletic groups. DR1236 was shown to belong to the highly-diverse metal specificity clade VI, together with TtCzrB, a Zn(2+)/Cd(2+) transporter from Thermus thermophilus, the Fe(2+) transporter Sll1263 from Synechocystis sp and eight uncharacterized homologs whose potential Mn(2+)/Zn(2+)/Cd(2+)/Fe(2+) specificities could not be accurately inferred because only eleven proteins were grouped in this clade. A new phylogeny inferred from the alignment of 197 clade VI homologs revealed three novel subfamilies of uncharacterized proteins. Remarkably, one of them contained 91 uncharacterized α-proteobacteria transporters (46% of the protein data set) grouped into a single subfamily. The Mn(2+)/Fe(2+) specificity of this subfamily was proposed through the functional characterization of the Rhizobium etli RHE_CH03072 gene. This gene was upregulated by Mn(2+), Zn(2+), Cd(2+) and Fe(2+) but conferred only Mn(2+) resistance to R. etli. The expression of the RHE_CH03072 gene in an E. coli mntP/zitB/zntA mutant did not relieve either Zn(2+) or Mn(2+) stress but slightly increased its Fe(2+) resistance. These results indicate that the RHE_CH03072 gene, now designated as emfA, encodes for a bacterial Mn(2+)/Fe(2+) resistance CDF protein, having orthologs in more than 60 α-proteobacterial species.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Rhizobium etli/metabolismo , Alphaproteobacteria/química , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Cátions Bivalentes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Rhizobium etli/química , Rhizobium etli/genética , Alinhamento de Sequência
11.
Metallomics ; 5(12): 1634-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24077251

RESUMO

The ubiquitous Cation Diffusion Facilitator proteins (CDF) play a key role in maintaining the cellular homeostasis of essential metal ions. Previous neighbor-joining phylogenetic analysis classified CDF proteins into three substrate-defined groups: Zn(2+), Fe(2+)/Zn(2+) and Mn(2+). These studies were unable to discern substrate-defined clades for Ni(2+), Co(2+), Cd(2+) and Cu(2+) transporters, despite their existence in this family. In this study we improved the accuracy of this previous functional classification using a phylogenomic approach based on a thorough maximum-likelihood phylogeny and the inclusion of recently characterized CDF transporters. The inference of CDF protein function predicted novel clades for Zn(2+), Fe(2+), Cd(2+) and Mn(2+). The Ni(2+)/Co(2+) and Co(2+) substrate specificities of two clades containing uncharacterized proteins were defined through the functional characterization of nepA and cepA metal inducible genes which independently conferred Ni(2+) and Co(2+) resistances to Rhizobium etli CFN42 and increased, respectively, Ni(2+)/Co(2+) and Co(2+) resistances to Escherichia coli. Neither NepA nor CepA confer Zn(2+), Fe(2+) and Mn(2+) resistances. The ability of NepA to confer Ni(2+)/Co(2+) resistance is dependent on clade-specific residues Asn(88) and Arg(197) whose mutations produce a non-functional protein.


Assuntos
Proteínas de Transporte de Cátions/genética , Cobalto/metabolismo , Níquel/metabolismo , Filogenia , Animais , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Rhizobium etli/genética , Rhizobium etli/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA