Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479601

RESUMO

Mechanically activated Piezo1 channels undergo transitions from closed to open-state in response to pressure and other mechanical stimuli. However, the molecular details of these mechanosensitive gating transitions are unknown. Here, we used cell-attached pressure-clamp recordings to acquire single channel data at steady-state conditions (where inactivation has settled down), at various pressures and voltages. Importantly, we identify and analyze subconductance states of the channel which were not reported before. Pressure-dependent activation of Piezo1 increases the occupancy of open and subconductance state at the expense of decreased occupancy of shut-states. No significant change in the mean open time of subconductance states was observed with increasing negative pipette pressure or with varying voltages (ranging from -40 to -100 mV). Using Markov-chain modeling, we identified a minimal four-states kinetic scheme, which recapitulates essential characteristics of the single channel data, including that of the subconductance level. This study advances our understanding of Piezo1-gating mechanism in response to discrete stimuli (such as pressure and voltage) and paves the path to develop cellular and tissue level models to predict Piezo1 function in various cell types.


Assuntos
Ativação do Canal Iônico , Canais Iônicos , Mecanotransdução Celular , Pressão , Humanos , Células HEK293 , Ativação do Canal Iônico/fisiologia , Canais Iônicos/metabolismo , Cinética , Cadeias de Markov
2.
Proc Natl Acad Sci U S A ; 116(34): 16829-16834, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31387976

RESUMO

Here, we present the atomic resolution crystallographic structure, the function, and the ion-binding properties of the KcsA mutants, G77A and G77C, that stabilize the 2,4-ion-bound configuration (i.e., water, K+, water, K+-ion-bound configuration) of the K+ channel's selectivity filter. A full functional and thermodynamic characterization of the G77A mutant revealed wild-type-like ion selectivity and apparent K+-binding affinity, in addition to showing a lack of C-type inactivation gating and a marked reduction in its single-channel conductance. These structures validate, from a structural point of view, the notion that 2 isoenergetic ion-bound configurations coexist within a K+ channel's selectivity filter, which fully agrees with the water-K+-ion-coupled transport detected by streaming potential measurements.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Ativação do Canal Iônico , Íons , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação Proteica , Estabilidade Proteica
3.
Nat Chem Biol ; 15(12): 1156-1164, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31591563

RESUMO

Phospholipids are key components of cellular membranes and are emerging as important functional regulators of different membrane proteins, including pentameric ligand-gated ion channels (pLGICs). Here, we take advantage of the prokaryote channel ELIC (Erwinia ligand-gated ion channel) as a model to understand the determinants of phospholipid interactions in this family of receptors. A high-resolution structure of ELIC in a lipid-bound state reveals a phospholipid site at the lower half of pore-forming transmembrane helices M1 and M4 and at a nearby site for neurosteroids, cholesterol or general anesthetics. This site is shaped by an M4-helix kink and a Trp-Arg-Pro triad that is highly conserved in eukaryote GABAA/C and glycine receptors. A combined approach reveals that M4 is intrinsically flexible and that M4 deletions or disruptions of the lipid-binding site accelerate desensitization in ELIC, suggesting that lipid interactions shape the agonist response. Our data offer a structural context for understanding lipid modulation in pLGICs.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/metabolismo , Lipídeos/química , Animais , Ligantes , Mutagênese , Xenopus
4.
FASEB J ; 34(7): 8902-8919, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32519783

RESUMO

TOKs are outwardly rectifying K+ channels in fungi with two pore-loops and eight transmembrane spans. Here, we describe the TOKs from four pathogens that cause the majority of life-threatening fungal infections in humans. These TOKs pass large currents only in the outward direction like the canonical isolate from Saccharomyces cerevisiae (ScTOK), and distinct from other K+ channels. ScTOK, AfTOK1 (Aspergillus fumigatus), and H99TOK (Cryptococcus neoformans grubii) are K+ -selective and pass current above the K+ reversal potential. CaTOK (Candida albicans) and CnTOK (Cryptococcus neoformans neoformans) pass both K+ and Na+ and conduct above a reversal potential reflecting the mixed permeability of their selectivity filter. Mutations in CaTOK and ScTOK at sites homologous to those that open the internal gates in classical K+ channels are shown to produce inward TOK currents. A favored model for outward rectification is proposed whereby the reversal potential determines ion occupancy, and thus, conductivity, of the selectivity filter gate that is coupled to an imperfectly restrictive internal gate, permitting the filter to sample ion concentrations on both sides of the membrane.


Assuntos
Condutividade Elétrica , Ativação do Canal Iônico/fisiologia , Oócitos/fisiologia , Canais de Potássio/fisiologia , Potássio/metabolismo , Sequência de Aminoácidos , Animais , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Clonagem Molecular , Biologia Computacional , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/metabolismo , Potenciais da Membrana , Oócitos/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência , Xenopus laevis
5.
Proc Natl Acad Sci U S A ; 115(21): 5426-5431, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735651

RESUMO

The selectivity filter and the activation gate in potassium channels are functionally and structurally coupled. An allosteric coupling underlies C-type inactivation coupled to activation gating in this ion-channel family (i.e., opening of the activation gate triggers the collapse of the channel's selectivity filter). We have identified the second Threonine residue within the TTVGYGD signature sequence of K+ channels as a crucial residue for this allosteric communication. A Threonine to Alanine substitution at this position was studied in three representative members of the K+-channel family. Interestingly, all of the mutant channels exhibited lack of C-type inactivation gating and an inversion of their allosteric coupling (i.e., closing of the activation gate collapses the channel's selectivity filter). A state-dependent crystallographic study of KcsA-T75A proves that, on activation, the selectivity filter transitions from a nonconductive and deep C-type inactivated conformation to a conductive one. Finally, we provide a crystallographic demonstration that closed-state inactivation can be achieved by the structural collapse of the channel's selectivity filter.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Potássio/química , Canais de Potássio/metabolismo , Potássio/metabolismo , Alanina/química , Alanina/genética , Alanina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Canais de Potássio/genética , Conformação Proteica , Treonina/química , Treonina/genética , Treonina/metabolismo
6.
Biophys J ; 118(10): 2612-2620, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32365329

RESUMO

Voltage-gated potassium (Kv) channels display several types of inactivation processes, including N-, C-, and U-types. C-type inactivation is attributed to a nonconductive conformation of the selectivity filter (SF). It has been proposed that the activation gate and the channel's SF are allosterically coupled because the conformational changes of the former affect the structure of the latter and vice versa. The second threonine of the SF signature sequence (e.g., TTVGYG) has been proven to be essential for this allosteric coupling. To further study the role of the SF in U-type inactivation, we substituted the second threonine of the TTVGYG sequence by an alanine in the hKv2.1 and hKv3.1 channels, which are known to display U-type inactivation. Both hKv2.1-T377A and hKv3.1-T400A yielded channels that were resistant to inactivation, and as a result, they displayed noninactivating currents upon channel opening; i.e., hKv2.1-T377A and hKv3.1-T400A remained fully conductive upon prolonged moderate depolarizations, whereas in wild-type hKv2.1 and hKv3.1, the current amplitude typically reduces because of U-type inactivation. Interestingly, increasing the extracellular K+ concentration increased the macroscopic current amplitude of both hKv2.1-T377A and hKv3.1-T400A, which is similar to the response of the homologous T to A mutation in Shaker and hKv1.5 channels that display C-type inactivation. Our data support an important role for the second threonine of the SF signature sequence in the U-type inactivation gating of hKv2.1 and hKv3.1.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio , Ativação do Canal Iônico , Potássio/metabolismo , Bloqueadores dos Canais de Potássio , Canais de Potássio/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(12): 3234-3239, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265056

RESUMO

Mode-shift or hysteresis has been reported in ion channels. Voltage-shift for gating currents is well documented for voltage-gated cation channels (VGCC), and it is considered a voltage-sensing domain's (VSD) intrinsic property. However, uncoupling the Shaker K+ channel's pore domain (PD) from the VSD prevented the mode-shift of the gating currents. Consequently, it was proposed that an open-state stabilization of the PD imposes a mechanical load on the VSD, which causes its mode-shift. Furthermore, the mode-shift displayed by hyperpolarization-gated cation channels is likely caused by structural changes at the channel's PD similar to those underlying C-type inactivation. To demonstrate that the PD of VGCC undergoes hysteresis, it is imperative to study its gating process in the absence of the VSD. A back-door strategy is to use KcsA (a K+ channel from the bacteria Streptomyces lividans) as a surrogate because it lacks a VSD and exhibits an activation coupled to C-type inactivation. By directly measuring KcsA's activation gate opening and closing in conditions that promote or halt C-type inactivation, we have found (i) that KcsA undergoes mode-shift of gating when having K+ as the permeant ion; (ii) that Cs+ or Rb+, known to halt C-inactivation, prevented mode-shift of gating; and (iii) that, in the total absence of C-type inactivation, KcsA's mode-shift was prevented. Finally, our results demonstrate that an allosteric communication causes KcsA's activation gate to "remember" the conformation of the selectivity filter, and hence KcsA requires a different amount of energy for opening than for closing.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico , Canais de Potássio/química , Canais de Potássio/metabolismo , Conformação Proteica , Proteínas de Bactérias/genética , Césio/química , Íons Pesados , Cinética , Potenciais da Membrana , Modelos Moleculares , Mutação , Canais de Potássio/genética , Rubídio/química , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 112(50): E7013-21, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26627718

RESUMO

Peptide neurotoxins are powerful tools for research, diagnosis, and treatment of disease. Limiting broader use, most receptors lack an identified toxin that binds with high affinity and specificity. This paper describes isolation of toxins for one such orphan target, KcsA, a potassium channel that has been fundamental to delineating the structural basis for ion channel function. A phage-display strategy is presented whereby ∼1.5 million novel and natural peptides are fabricated on the scaffold present in ShK, a sea anemone type I (SAK1) toxin stabilized by three disulfide bonds. We describe two toxins selected by sorting on purified KcsA, one novel (Hui1, 34 residues) and one natural (HmK, 35 residues). Hui1 is potent, blocking single KcsA channels in planar lipid bilayers half-maximally (Ki) at 1 nM. Hui1 is also specific, inhibiting KcsA-Shaker channels in Xenopus oocytes with a Ki of 0.5 nM whereas Shaker, Kv1.2, and Kv1.3 channels are blocked over 200-fold less well. HmK is potent but promiscuous, blocking KcsA-Shaker, Shaker, Kv1.2, and Kv1.3 channels with Ki of 1-4 nM. As anticipated, one Hui1 blocks the KcsA pore and two conserved toxin residues, Lys21 and Tyr22, are essential for high-affinity binding. Unexpectedly, potassium ions traversing the channel from the inside confer voltage sensitivity to the Hui1 off-rate via Arg23, indicating that Lys21 is not in the pore. The 3D structure of Hui1 reveals a SAK1 fold, rationalizes KcsA inhibition, and validates the scaffold-based approach for isolation of high-affinity toxins for orphan receptors.


Assuntos
Bacteriófagos/genética , Neurotoxinas/farmacologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Neurotoxinas/química , Peptídeos/química , Homologia de Sequência de Aminoácidos
9.
Protein Expr Purif ; 133: 177-186, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28279818

RESUMO

The Erwinia chrysanthemi ligand-gated ion channel, ELIC, is considered an excellent structural and functional surrogate for the whole pentameric ligand-gated ion channel family. Despite its simplicity, ELIC is structurally capable of undergoing ligand-dependent activation and a concomitant desensitization process. To determine at the molecular level the structural changes underlying ELIC's function, it is desirable to produce large quantities of protein. This protein should be properly folded, fully-functional and amenable to structural determinations. In the current paper, we report a completely new protocol for the expression and purification of milligram quantities of fully-functional, more stable and crystallizable ELIC. The use of an autoinduction media and inexpensive detergents during ELIC extraction, in addition to the high-quality and large quantity of the purified channel, are the highlights of this improved biochemical protocol.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Dickeya chrysanthemi/química , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/isolamento & purificação
10.
Molecules ; 22(12)2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29186829

RESUMO

In addition to gap junctional channels that mediate cell-to-cell communication, connexins form hemichannels that are present at the plasma membrane. Since hemichannels are permeable to small hydrophilic compounds, including metabolites and signaling molecules, their abnormal opening can cause or contribute to cell damage in disorders such as cardiac infarct, stroke, deafness, skin diseases, and cataracts. Therefore, hemichannels are potential pharmacological targets. A few aminoglycosides, well-known broad-spectrum antibiotics, have been shown to inhibit hemichannels. Here, we tested several commercially available aminoglycosides for inhibition of human connexin hemichannels using a cell-based bacterial growth complementation assay that we developed recently. We found that kanamycin A, kanamycin B, geneticin, neomycin, and paromomycin are effective inhibitors of hemichannels formed by connexins 26, 43, and 46 (Cx26, Cx43, and Cx46). Because of the >70 years of clinical experience with aminoglycosides and the fact that several of the aminoglycosides tested here have been used in humans, they are promising starting points for the development of effective connexin hemichannel inhibitors.


Assuntos
Aminoglicosídeos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Conexinas/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Aminoglicosídeos/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Isoformas de Proteínas
11.
Yale J Biol Med ; 90(1): 87-95, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28356896

RESUMO

Activation of connexin hemichannels is involved in the pathophysiology of disorders that include deafness, stroke, and cardiac infarct. This aspect makes hemichannels an attractive therapeutic target. Unfortunately, most available inhibitors are not selective or isoform specific, which hampers their translational application. The absence of a battery of useful inhibitors is due in part to the absence of simple screening assays for the discovery of hemichannel-active drugs. Here, we present an assay that we have recently developed to assess hemichannel function. The assay is based on the expression of functional human connexins in a genetically modified bacterial strain deficient in K+ uptake. These modified cells do not grow in low-K+ medium, but functional expression of connexin hemichannels allows K+ uptake and growth. This cell-growth-based assay is simple, robust, and easily scalable to high-throughput multi-well platforms.


Assuntos
Bioensaio/métodos , Animais , Conexinas/metabolismo , Humanos , Potássio/metabolismo , Isoformas de Proteínas/metabolismo
12.
Protein Expr Purif ; 127: 53-60, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27393071

RESUMO

KcsA, the bacterial K(+) channel from Streptomyces lividans, is the prototypical model system to study the functional and structural correlations of the pore domain of eukaryotic voltage-gated K(+) channels (Kv channels). It contains all the molecular elements responsible for ion conduction, activation, deactivation and inactivation gating [1]. KcsA's structural simplicity makes it highly amenable for structural studies. Therefore, it is methodological advantageous to produce large amounts of functional and properly folded KcsA in a cost-effective manner. In the present study, we show an optimized protocol for the over-expression and purification of large amounts of high-quality, fully functional and crystallizable KcsA using inexpensive detergents, which significantly lowered the cost of the purification process.


Assuntos
Proteínas de Bactérias , Expressão Gênica , Canais de Potássio , Streptomyces lividans/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Canais de Potássio/biossíntese , Canais de Potássio/química , Canais de Potássio/genética , Canais de Potássio/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Streptomyces lividans/metabolismo
13.
Nature ; 466(7303): 203-8, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20613835

RESUMO

Interconversion between conductive and non-conductive forms of the K(+) channel selectivity filter underlies a variety of gating events, from flicker transitions (at the microsecond timescale) to C-type inactivation (millisecond to second timescale). Here we report the crystal structure of the Streptomyces lividans K(+) channel KcsA in its open-inactivated conformation and investigate the mechanism of C-type inactivation gating at the selectivity filter from channels 'trapped' in a series of partially open conformations. Five conformer classes were identified with openings ranging from 12 A in closed KcsA (Calpha-Calpha distances at Thr 112) to 32 A when fully open. They revealed a remarkable correlation between the degree of gate opening and the conformation and ion occupancy of the selectivity filter. We show that a gradual filter backbone reorientation leads first to a loss of the S2 ion binding site and a subsequent loss of the S3 binding site, presumably abrogating ion conduction. These structures indicate a molecular basis for C-type inactivation in K(+) channels.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Ativação do Canal Iônico , Canais de Potássio/química , Streptomyces lividans/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Elétrons , Cinética , Modelos Biológicos , Modelos Moleculares , Potássio/metabolismo , Canais de Potássio/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
14.
Nature ; 466(7303): 272-5, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20613845

RESUMO

The coupled interplay between activation and inactivation gating is a functional hallmark of K(+) channels. This coupling has been experimentally demonstrated through ion interaction effects and cysteine accessibility, and is associated with a well defined boundary of energetically coupled residues. The structure of the K(+) channel KcsA in its fully open conformation, in addition to four other partial channel openings, richly illustrates the structural basis of activation-inactivation gating. Here, we identify the mechanistic principles by which movements on the inner bundle gate trigger conformational changes at the selectivity filter, leading to the non-conductive C-type inactivated state. Analysis of a series of KcsA open structures suggests that, as a consequence of the hinge-bending and rotation of the TM2 helix, the aromatic ring of Phe 103 tilts towards residues Thr 74 and Thr 75 in the pore-helix and towards Ile 100 in the neighbouring subunit. This allows the network of hydrogen bonds among residues Trp 67, Glu 71 and Asp 80 to destabilize the selectivity filter, allowing entry to its non-conductive conformation. Mutations at position 103 have a size-dependent effect on gating kinetics: small side-chain substitutions F103A and F103C severely impair inactivation kinetics, whereas larger side chains such as F103W have more subtle effects. This suggests that the allosteric coupling between the inner helical bundle and the selectivity filter might rely on straightforward mechanical deformation propagated through a network of steric contacts. Average interactions calculated from molecular dynamics simulations show favourable open-state interaction-energies between Phe 103 and the surrounding residues. We probed similar interactions in the Shaker K(+) channel where inactivation was impaired in the mutant I470A. We propose that side-chain rearrangements at position 103 mechanically couple activation and inactivation in KcsA and a variety of other K(+) channels.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico , Canais de Potássio/química , Canais de Potássio/metabolismo , Streptomyces lividans/química , Regulação Alostérica , Proteínas de Bactérias/genética , Cisteína/genética , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Fenilalanina/metabolismo , Canais de Potássio/genética , Conformação Proteica , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/metabolismo , Relação Estrutura-Atividade
15.
Proc Natl Acad Sci U S A ; 110(46): 18716-21, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24167270

RESUMO

Cryoelectron microscopy and X-ray crystallography have recently been used to generate structural models that likely represent the unliganded closed-channel conformation and the fully liganded open-channel conformation of different members of the nicotinic-receptor superfamily. To characterize the structure of the closed-channel conformation in its liganded state, we identified a number of positions in the loop between transmembrane segments 2 (M2) and 3 (M3) of a proton-gated ortholog from the bacterium Gloeobacter violaceus (GLIC) where mutations to alanine reduce the liganded-gating equilibrium constant, and solved the crystal structures of two such mutants (T25'A and Y27'A) at pH ~4.0. At the level of backbone atoms, the liganded closed-channel model presented here differs from the liganded open-channel structure of GLIC in the pre-M1 linker, the M3-M4 loop, and much more prominently, in the extracellular half of the pore lining, where the more pronounced tilt of the closed-channel M2 α-helices toward the pore's long axis narrows the permeation pathway. On the other hand, no differences between the liganded closed-channel and open-channel models could be detected at the level of the extracellular domain, where conformational changes are expected to underlie the low-to-high proton-affinity switch that drives gating of proton-bound channels. Thus, the liganded closed-channel model is nearly indistinguishable from the recently described "locally closed" structure. However, because cross-linking strategies (which could have stabilized unstable conformations) and mutations involving ionizable side chains (which could have affected proton-gated channel activation) were purposely avoided, we favor the notion that this structure represents one of the end states of liganded gating rather than an unstable intermediate.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Cianobactérias/química , Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Conformação Proteica , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Mutagênese , Técnicas de Patch-Clamp
16.
Pharmacol Res ; 101: 56-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26305431

RESUMO

Voltage-gated ion channels are the molecular determinants of cellular excitability. This group of ion channels is one of the most important pharmacological targets in excitable tissues such as nervous system, cardiac and skeletal muscle. Moreover, voltage-gated ion channels are expressed in non-excitable cells, where they mediate key cellular functions through intracellular biochemical mechanisms rather than rapid electrical signaling. This review aims at illustrating the pharmacological impact of these ion channels, highlighting in particular the structural details and physiological functions of two of them - the high conductance voltage- and Ca(2+)-gated K(+) (BK) channels and voltage-gated proton (Hv1) channels- in non-excitable cells. BK channels have been implicated in a variety of physiological processes ranging from regulation of smooth muscle tone to modulation of hormone and neurotransmitter release. Interestingly, BK channels are also involved in modulating K(+) transport in the mammalian kidney and colon epithelium with a potential role in the hyperkalemic phenotype observed in patients with familial hyperkalemic hypertension type 2, and in the pathophysiology of hypertension. In addition, BK channels are responsible for resting and stimulated Ca(2+)-activated K(+) secretion in the distal colon. Hv1 channels have been detected in many cell types, including macrophages, blood cells, lung epithelia, skeletal muscle and microglia. These channels have a central role in the phagocytic system. In macrophages, Hv1 channels participate in the generation of reactive oxygen species in the respiratory burst during the process of phagocytosis.


Assuntos
Canais Iônicos/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Tratamento Farmacológico , Humanos , Canais Iônicos/química , Canais Iônicos/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Modelos Biológicos , Modelos Moleculares , Terapia de Alvo Molecular
17.
Biochemistry ; 53(10): 1627-36, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24490868

RESUMO

In contrast to the majority of voltage-gated ion channels, hyperpolarization-activated channels remain closed at depolarizing potentials and are activated at hyperpolarizing potentials. The basis for this reverse polarity is thought to be a result of differences in the way the voltage-sensing domain (VSD) couples to the pore domain. In the absence of structural data, the molecular mechanism of this reverse polarity coupling remains poorly characterized. Here we report the characterization of the structure and local dynamics of the closed activation gate (lower S6 region) of MVP, a hyperpolarization-activated potassium channel from Methanococcus jannaschii, by electron paramagnetic resonance (EPR) spectroscopy. We show that a codon-optimized version of MVP has high expression levels in Escherichia coli, is purified as a stable tetramer, and exhibits expected voltage-dependent activity when reconstituted in liposomes. EPR analysis of the mid to lower S6 region revealed positions exhibiting strong spin-spin coupling, indicating that the activation gate of MVP is closed at 0 mV. A comparison of local environmental parameters along the activation gate for MVP and KcsA indicates that MVP adopts a different closed conformation. These structural details set the stage for future evaluations of reverse electromechanical coupling in MVP.


Assuntos
Proteínas Arqueais/química , Methanocaldococcus/metabolismo , Canais de Potássio/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cinética , Methanocaldococcus/química , Methanocaldococcus/genética , Canais de Potássio/genética , Canais de Potássio/metabolismo , Estrutura Secundária de Proteína
18.
Proc Natl Acad Sci U S A ; 108(29): 11896-9, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730186

RESUMO

Using a constitutively active channel mutant, we solved the structure of full-length KcsA in the open conformation at 3.9 Å. The structure reveals that the activation gate expands about 20 Å, exerting a strain on the bulge helices in the C-terminal domain and generating side windows large enough to accommodate hydrated K(+) ions. Functional and spectroscopic analysis of the gating transition provides direct insight into the allosteric coupling between the activation gate and the selectivity filter. We show that the movement of the inner gate helix is transmitted to the C-terminus as a straightforward expansion, leading to an upward movement and the insertion of the top third of the bulge helix into the membrane. We suggest that by limiting the extent to which the inner gate can open, the cytoplasmic domain also modulates the level of inactivation occurring at the selectivity filter.


Assuntos
Proteínas de Bactérias/química , Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Canais de Potássio/química , Conformação Proteica , Proteínas de Bactérias/genética , Cristalografia , Espectroscopia de Ressonância de Spin Eletrônica , Mutação/genética , Canais de Potássio/genética
19.
Proc Natl Acad Sci U S A ; 106(52): 22211-6, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20007782

RESUMO

Venomous animals immobilize prey using protein toxins that act on ion channels and other targets of biological importance. Broad use of toxins for biomedical research, diagnosis, and therapy has been limited by inadequate target discrimination, for example, among ion channel subtypes. Here, a synthetic toxin is produced by a new strategy to be specific for human Kv1.3 channels, critical regulators of immune T cells. A phage display library of 11,200 de novo proteins is designed using the alpha-KTx scaffold of 31 scorpion toxin sequences known or predicted to bind to potassium channels. Mokatoxin-1 (moka1) is isolated by affinity selection on purified target. Moka1 blocks Kv1.3 at nanomolar levels that do not inhibit Kv1.1, Kv1.2, or KCa1.1. As a result, moka1 suppresses CD3/28-induced cytokine secretion by T cells without cross-reactive gastrointestinal hyperactivity. The 3D structure of moka1 rationalizes its specificity and validates the engineering approach, revealing a unique interaction surface supported on an alpha-KTx scaffold. This scaffold-based/target-biased strategy overcomes many obstacles to production of selective toxins.


Assuntos
Canal de Potássio Kv1.3/antagonistas & inibidores , Neurotoxinas/farmacologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/farmacologia , Sequência de Aminoácidos , Animais , Citocinas/biossíntese , Desenho de Fármacos , Feminino , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular , Canal de Potássio Kv1.3/genética , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Neurotoxinas/química , Neurotoxinas/genética , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Biblioteca de Peptídeos , Peptídeos/química , Bloqueadores dos Canais de Potássio/química , Engenharia de Proteínas , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Venenos de Escorpião/química , Venenos de Escorpião/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Xenopus laevis
20.
Sci Adv ; 8(37): eabn1731, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112676

RESUMO

Voltage-gated K+ (Kv) channels mediate the flow of K+ across the cell membrane by regulating the conductive state of their activation gate (AG). Several Kv channels display slow C-type inactivation, a process whereby their selectivity filter (SF) becomes less or nonconductive. It has been proposed that, in the fast inactivation-removed Shaker-IR channel, the W434F mutation epitomizes the C-type inactivated state because it functionally accelerates this process. By introducing another pore mutation that prevents AG closure, P475D, we found a way to record ionic currents of the Shaker-IR-W434F-P475D mutant at hyperpolarized membrane potentials as the W434F-mutant SF recovers from its inactivated state. This W434F conductive state lost its high K+ over Na+ selectivity, and even NMDG+ can permeate, features not observed in a wild-type SF. This indicates that, at least during recovery from inactivation, the W434F-mutant SF transitions to a widened and noncationic specific conformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA