Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 168: 540-550, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393970

RESUMO

Although inactivated vaccines have higher safety than live-attenuated vaccines in the control of pseudorabies virus (PRV), their protection efficacy is limited due to insufficient immunogenicity when used alone. High-performance adjuvants that can potentiate immune responses are highly desirable to improve the protection efficacy of inactivated vaccines. In this work, we have developed U@PAA-Car, a Carbopol dispersed zirconium-based metal-organic framework UIO-66 modified by polyacrylic acid (PAA), as a promising adjuvant for inactivated PRV vaccines. The U@PAA-Car has good biocompatibility, high colloidal stability, and antigen (vaccine) loading capacity. It significantly potentiates humoral and cellular immune responses over either U@PAA, Carbopol, or commercial adjuvants such as Alum and biphasic 201 by inducing a higher specific antibody titer, IgG2a/IgG1 ratio, cell cytokine secretion, and splenocyte proliferation. A protection rate of over 90% was observed in challenge tests in the model animal mice and the host animal pigs, which is much higher than that observed with commercial adjuvants. The high performance of the U@PAA-Car is attributed to antigen sustainable release at the injection site and highly efficient antigen internalization and presentation. In conclusion, this work not only demonstrates a great potential of the developed U@PAA-Car nano-adjuvant for the inactivated PRV vaccine but also gives a preliminary explanation of its action mechanism. STATEMENT OF SIGNIFICANCE: We have developed a Carbopol dispersed PAA-modified zirconium-based metal-organic framework UIO-66 (U@PAA-Car) as a promising combination nano-adjuvant for the inactivated PRV vaccine. The U@PAA-Car induced higher specific antibody titers and IgG2a/IgG1 ratio, increased cell cytokines secretion, and better splenocyte proliferation than U@PAA, Carbopol, and the commercial adjuvants Alum and biphasic 201, indicating that it induces a significant potentiation of humoral and cellular immune response. In addition, much higher protection rates were achieved with the U@PAA-Car-adjuvanted PRV vaccine in mice and pigs challenge than those observed from the commercial adjuvant groups. This work not only demonstrates the great potential of the U@PAA-Car nano-adjuvant in an inactivated PRV vaccine but also gives a preliminary explanation of its action mechanism.


Assuntos
Herpesvirus Suídeo 1 , Estruturas Metalorgânicas , Pseudorraiva , Animais , Suínos , Camundongos , Pseudorraiva/prevenção & controle , Zircônio/farmacologia , Adjuvantes Imunológicos/farmacologia , Imunidade Celular , Citocinas , Imunoglobulina G , Vacinas de Produtos Inativados
2.
J Colloid Interface Sci ; 641: 961-971, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36989822

RESUMO

Lanthanide (Ln3+) luminescent materials play a crucial role in information security and data storage owing to their excellent and unique optical properties. The advances in dynamic colorful luminescent anti-counterfeiting nanomaterials enable the generation of a high-level information encryption. In this work, a superior thermal, optical wavelength and excitation power triple-mode stimuli-responsive emission color modulation is demonstrated in a lanthanide-doped nanostructured luminescent material. The plentiful emission colors are manipulated by modulating the composition of a fluoride core-shell nanostructure with different Ln3+ at different doping concentrations. The nanomaterials display remarkable excitation wavelength/power-dependent color change, along with temperature-dependent color variation in the range from 298 K to 437 K, with a good relative sensitivity Sr of 1.1387% K-1 at 398 K. The universal optical modulation, combined with the excellent optical and structural stability of the luminescent nanoparticles, renders many advantages for the anti-counterfeiting application. This work explores a universal strategy for the manipulation of triple-mode stimuli-responsive dynamic luminescence and demonstrates its good potential for anti-counterfeiting application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA