Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576258

RESUMO

Food bioactives exhibit various health-promoting effects and are widely used in functional foods to maintain human health. After oral intake, bioactives undergo complex biological processes before reaching the target organs to exert their biological effects. However, several factors may reduce their bioavailability. Colloidal systems have attracted special attention due to their great potential to improve bioavailability and bioefficiency. Herein, we focus on the importance of in vivo studies of the biological fates of bioactives delivered by colloidal systems. Increasing evidence demonstrates that the construction, composition, and physicochemical properties of the delivery systems significantly influence the in vivo biological fates of bioactives. These results demonstrate the great potential to control the in vivo behavior of food bioactives by designing specific delivery systems. We also compare in vivo and in vitro models used for biological studies of the fate of food bioactives delivered by colloidal systems. Meanwhile, the significance of the gut microbiota, targeted delivery, and personalized nutrition should be carefully considered. This review provides new insight for further studies of food bioactives delivered by colloidal systems, as well as scientific guidance for the reasonable design of personalized nutrition.

2.
Crit Rev Food Sci Nutr ; 61(5): 756-776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32255367

RESUMO

Citrus, one of the most popular fruits worldwide, contains various functional components, including flavonoids, dietary fibers (DFs), essential oils (EOs), synephrines, limonoids, and carotenoids. The functional components of citrus attract special attention due to their health-promoting effects. Food components undergo complex biotransformation by host itself and the gut microbiota after oral intake, which alters their bioaccessibility, bioavailability, and bioactivity in the host body. To better understand the health effects of citrus fruits, it is important to understand the in-vivo biotransformation of citrus functional components. We reviewed the biotransformation of citrus functional components (flavonoids, DFs, EOs, synephrines, limonoids, and carotenoids) in the body from their intake to excretion. In addition, we described the importance of biotransformation in terms of health effects. This review would facilitate mechanistic understanding of the health-promoting effect of citrus and its functional components, and also provide guidance for the development of health-promoting foods based on citrus and its functional components.


Assuntos
Citrus , Biotransformação , Carotenoides , Flavonoides , Frutas
3.
Bioorg Chem ; 88: 102942, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31028988

RESUMO

The sulfated rhamnose polysaccharides found in Enteromorpha prolifera belong to a class of unique polyanionic polysaccharides with high chelation capacity. In this study, a complex of sulfated rhamnose polysaccharides with chromium(III) (SRPC) was synthesized, and its effect on type 2 diabetes mellitus (T2DM) in mice fed a high-fat, high-sucrose diet was investigated. The molecular weight of SRPC is 4.57 kDa, and its chromium content is 28 µg/mg. Results indicated that mice treated by oral administration of SRPC (10 mg/kg and 30 mg/kg body mass per day) for 11 weeks showed significantly improved oral glucose tolerance, decreased body mass gain, reduced serum insulin levels, and increased tissue glycogen content relative to T2DM mice (p < 0.01). SRPC treatment improved glucose metabolism via activation of the IR/IRS-2/PI3K/PKB/GSK-3ß signaling pathway (which is related to glycogen synthesis) and enhanced glucose transport through insulin signaling cascade-induced GLUT4 translocation. Because of its effectiveness and stability, SRPC could be used as a therapeutic agent for blood glucose control and a promising nutraceutical for T2DM treatment.


Assuntos
Compostos de Cromo/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Polissacarídeos/uso terapêutico , Ramnose/uso terapêutico , Sulfatos/uso terapêutico , Animais , Compostos de Cromo/química , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Hipoglicemiantes/química , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/análise , Ramnose/química , Sulfatos/química
4.
Mar Drugs ; 17(1)2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609655

RESUMO

Polysaccharide chromium (III) derivatives are gaining increasing attention in improving type 2 diabetes. In this study, the sulfated polysaccharide from Enteromorpha prolifera (SPE) with 4.8 kDa was prepared by specific enzymatic hydrolysis. The obtained SPE was used to prepare a rhamnan-type sulfated polysaccharide derivative (SPED). Results indicated that O-H, C=O, and S=O were effectively involved in the chelation of SPED (chromium content 20.26%). Acute (half lethal dose > 2.38 g/kg) and sub-acute toxicity showed that SPED had no damaging effects on mice. Anti-diabetic experiment demonstrated that SPED improved glucose metabolism. Moreover, SPED promoted the PI3K/PKB/GSK-3ß signaling pathway by regulating mRNA expression of insulin receptors (IR), insulin receptor substrate 2 (IRS-2), phosphatidylinositol 3 kinase (PI3K), protein kinase B (PKB), and glycogen synthase kinase 3ß (GSK-3ß). In conclusion, the SPED might represent a novel marine-derived candidate against hyperglycemia, which may undergo further pharmaceutical development as a hypoglycemic agent.


Assuntos
Desoxiaçúcares/farmacologia , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Mananas/farmacologia , Polissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Hiperglicemia/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Compr Rev Food Sci Food Saf ; 18(5): 1514-1532, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33336908

RESUMO

Dietary fibers (DFs) regulate host health through various mechanisms related to their dietary sources, specific physicochemical structures, fermentability, and physiological properties in the gut. Considering the numerous types and sources of DFs and their different physicochemical and physiological properties, it is challenging yet important to establish the key mechanisms for the beneficial health effects of DFs. In this review, the types and structures of DFs from different fruits and vegetables were summarized and the effects of different processing methods on DF properties were discussed. Moreover, the impacts of DFs on gut microbial ecology, host physiology, and health were described. Understanding the complex interaction between different DFs and gut microbiota is vital for personalized nutrition. It is also important to comprehend factors influencing gut microbiota and strategies to regulate the microbiota, thereby augmenting beneficial health responses. The exploration of molecular mechanism linking DFs, gut microbiota, and host physiology may allow for the identification of effective targets to fight against major chronic diseases.

6.
Carbohydr Polym ; 346: 122668, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245519

RESUMO

Gelation is a critical property of citrus pectin. However, the roles played by neutral sugar side-chains on acid-induced pectin gelation remain poorly understood. Herein, galactan- or/and arabinan-eliminated pectins (P-G, P-A, and P-AG) were used to investigate the effects of side-chains on gelation. The gel hardness values of citrus pectin, P-G, P-A, and P-AG were 42.6, 39.9, 5.3, and 2.1 g, respectively, suggesting that arabinan contributed more to gelation than galactan. We next found that arabinan branches promoted pectin chain entanglement more effectively than arabinan backbones. Destabilizer addition experiments showed that hydrogen bonding, electrostatic interaction, and hydrophobic interaction were the main forces affecting pectin gel networks and strength, which was further validated by molecular dynamic simulations. The total number of hydrogen bonds between the arabinan branches and galactan/HG (65.7) was significantly higher than that between the arabinan backbones and galactan/HG (39.1), indicating that arabinan branches predominated in terms of such interactions. This study thus elucidated the roles played by neutral-sugar side-chains, especially the arabinan branches of acid-induced pectin gels, in term of enhancing high-methoxyl pectin gelation, and offers novel insights into the structure-gelling relationships of citrus pectin.


Assuntos
Géis , Ligação de Hidrogênio , Pectinas , Pectinas/química , Géis/química , Polissacarídeos/química , Simulação de Dinâmica Molecular , Citrus/química , Interações Hidrofóbicas e Hidrofílicas
7.
Food Chem ; 459: 140370, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38986208

RESUMO

Due to the excellent health benefits of rhamnogalacturonan I (RG-I)-enriched pectin, there has been increasing research interest in its gelling properties. To elucidate its structure-gelation relationship, chemical modifications were used to obtain RG-I-enriched pectin (P11). Then, enzymatic modification was performed to obtain debranched pectins GP11 and AP11, respectively. The effects of RG-I side chains on structural characteristics (especially spatial conformation) and gelling properties were investigated. Among the low-methoxylated pectins (LMPs), AP11, with a loose conformation (Dmax 52 nm) showed the poorest gelling, followed by GP11. In addition to primary structure, spatial conformation (Dmax and Rg) also showed strong correlations (r2 > 0.8) with gelation. We speculate that compact conformation may shorten distance between pectin chains and reduces steric hindrance, contributing to formation of strong gel network. This is particularly important in LMPs with abundant side chains. The results provide novel insights into relationship between spatial conformation and gelling properties of RG-I-enriched pectin.


Assuntos
Citrus , Géis , Pectinas , Pectinas/química , Géis/química , Citrus/química , Cálcio/química , Cálcio/metabolismo
8.
Int J Biol Macromol ; 230: 123298, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646343

RESUMO

(-)-Epigallocatechin (EGC) has good health benefits, but its chemical stability is low. Pectin hydrogels have potential for the encapsulation and delivery of EGC, but they are limited by porous networks and poor mechanical properties. In this study, protein (whey protein isolate and caseinate)-reinforced pectin hydrogel beads (HBPEC-WPI and HBPEC-CAS) were developed to overcome these limitations. The results showed that HBPEC-CAS was a superior delivery system for EGC. HBPEC-CAS had a compact network structure, mainly because of the hydrogen bonds that formed between caseinate and pectin. Moreover, the EGC encapsulation efficiency of HBPEC-CAS (2.4%) reached 92.23 %; HBPEC-CAS (2.4%) could also delay the release of EGC in an aqueous environment, while ensuring its sufficient release in a simulated gastrointestinal environment. Notably, EGC was chemically stabilized in HBPEC-CAS (2.4%) during a 6-day storage period at 37 °C through the inhibition of its epimerization, oxidation, dimerization, and trimerization. The numerous hydroxyl groups in EGC readily interacted with the exposed amino acid residues in caseinate and created more protective sites. This study developed a strategy for protein-reinforced pectin hydrogel development and approaches for the protection of tea polyphenols; the findings offer useful insights for the tea-based food and beverage industry.


Assuntos
Catequina , Hidrogéis , Hidrogéis/química , Pectinas/química , Caseínas , Chá
9.
J Agric Food Chem ; 70(5): 1704-1714, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080177

RESUMO

A comprehensive understanding of the relationships between the structure and function is critical for the targeted preparation of functional pectins. In this study, we compared the alleviating effects of five orange pectins (200 mg/kg) extracted using acid (P2), alkali (P10), cellulase (C), acid + cellulase (P2 + C), and alkali + cellulase (P10 + C) on dextran sodium sulfate-induced acute colitis. The physiological and histopathological indicators revealed that the alleviating effects were most significant for P10 + C, followed by P10, P2 + C, P2, and C. P10 + C increased the diversity and relative abundance of Akkermansia, leading to increased generation of colonic short-chain fatty acids as well as mRNA and protein expressions of GPR43, GPR109A, claudin-1, ZO-1, and occludin. Therefore, proinflammatory cytokines were decreased, and anti-inflammatory cytokines were increased. A compact conformation of P10 + C contributed to the alleviation effects on acute colitis. Alkali + cellulase-extracted orange pectin with a compact conformation has potential as adjuvant treatment for intestinal inflammation.


Assuntos
Citrus sinensis , Colite , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Colo , Citocinas , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Pectinas
10.
Mar Life Sci Technol ; 4(2): 245-254, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-37073221

RESUMO

Sulfated rhamnose polysaccharide (SRP) derived from Enteromorpha prolifera is a metal-ion chelating agent that could potentially be used to treat diabetes. The aim of our study was to determine the effect of a variant of SRP on DIABETES. First, we synthesized and characterized SRPE-3 chromium(III) [SRPE-3-Cr(III)] complex using an enzymatic method. The maximum chelation rate was 18.2% under optimal chelating conditions of pH 6.0, time 4 h, and temperature 60 °C. Fourier transform infrared spectroscopy results showed important sites for Cr(III)-binding were O-H and C=O groups. We then studied the hypolipidemic effects of SRPE-3-Cr(III) on type 2 diabetes mellitus (T2DM) induced by a high-fat, high-sucrose diet (HFSD). Decreased blood glucose content, body fat ratio, serum TG, TC, LDL-C, and increased serum HDL-C were observed after treatment with SRPE-3-Cr(III). In addition, SRPE-3-Cr(III) significantly reduced leptin, resistin, and TNF-α levels, and increased adiponectin contents relative to T2DM. Histopathology results also showed that SRPE-3-Cr(III) could alleviate the HFSD-lesioned tissues. SRPE-3-Cr(III) also improved lipid metabolism via a reduction in aspartate aminotransferase, alanine aminotransferase, fatty acid synthase, and acetyl-CoA carboxylase activities in the liver. SRPE-3-Cr(III) at low doses exhibited better lipid-lowering activities, hence, could be considered to be a novel compound to treat hyperlipidemia and also act as an anti-diabetic agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA