Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 618(7963): 63-68, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37259002

RESUMO

Titanium alloys are advanced lightweight materials, indispensable for many critical applications1,2. The mainstay of the titanium industry is the α-ß titanium alloys, which are formulated through alloying additions that stabilize the α and ß phases3-5. Our work focuses on harnessing two of the most powerful stabilizing elements and strengtheners for α-ß titanium alloys, oxygen and iron1-5, which are readily abundant. However, the embrittling effect of oxygen6,7, described colloquially as 'the kryptonite to titanium'8, and the microsegregation of iron9 have hindered their combination for the development of strong and ductile α-ß titanium-oxygen-iron alloys. Here we integrate alloy design with additive manufacturing (AM) process design to demonstrate a series of titanium-oxygen-iron compositions that exhibit outstanding tensile properties. We explain the atomic-scale origins of these properties using various characterization techniques. The abundance of oxygen and iron and the process simplicity for net-shape or near-net-shape manufacturing by AM make these α-ß titanium-oxygen-iron alloys attractive for a diverse range of applications. Furthermore, they offer promise for industrial-scale use of off-grade sponge titanium or sponge titanium-oxygen-iron10,11, an industrial waste product at present. The economic and environmental potential to reduce the carbon footprint of the energy-intensive sponge titanium production12 is substantial.

2.
Small ; : e2304369, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715070

RESUMO

High-magnetization materials play crucial roles in various applications. However, the past few decades have witnessed a stagnation in the discovery of new materials with high magnetization. In this work, Ni/NiO nanocomposites are fabricated by depositing Ni and NiO thin layers alternately, followed by annealing at specific temperatures. Both the as-deposited samples and those annealed at 373 K exhibit low magnetization. However, the samples annealed at 473 K exhibit a significantly enhanced saturation magnetization exceeding 607 emu cm-3 at room temperature, surpassing that of pure Ni (480 emu cm-3 ). Material characterizations indicate that the composite comprises NiO nanoclusters of size 1-2 nm embedded in the Ni matrix. This nanoclustered NiO is primarily responsible for the high magnetization, as confirmed by density functional theory calculations. The calculations also indicate that the NiO clusters are ferromagnetically coupled with Ni, resulting in enhanced magnetization. This work demonstrates a new route toward developing artificial high-magnetization materials using the high magnetic moments of nanoclustered antiferromagnetic materials.

3.
J Am Chem Soc ; 144(15): 6770-6778, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35385287

RESUMO

Formamidinium lead triiodide (FAPbI3) currently holds the record conversion efficiency in the single-junction perovskite solar cell. Iodine management is known to be essential to suppress defect-induced nonradiative losses in FAPbI3 active layers. However, the origin of nonradiative losses and the underlying mechanism of suppressing such losses by iodine-concentration management remain unknown. Here, through first-principles simulation, we demonstrate that native point defects are not responsible for the nonradiative losses in FAPbI3. Instead, hydrogen ions, which can be abundant under both iodine-rich and iodine-poor conditions in FAPbI3, act as efficient nonradiative recombination centers and are proposed to be responsible for the suppressed power conversion efficiency. Moreover, iodine-moderate synthesis conditions can favor the formation of electrically inactive molecular hydrogen, which can dramatically suppress the detrimental hydrogen ions. This work identifies the dominant nonradiative recombination centers in the widely used FAPbI3 layers and rationalizes how the prevailing iodine management reduces the nonradiative losses. Minimizing the unintentional hydrogen incorporation in the perovskite is critical for achieving high device performance.

4.
Nanotechnology ; 33(7)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34763327

RESUMO

Thermal annealing temperature and time dictate the microstructure of semiconductor materials such as silicon nanocrystals (Si NCs). Herein, atom probe tomography (APT) and density functional theory (DFT) calculations are used to understand the thermal annealing temperature effects on Si NCs grown in a SiO2matrix and the distribution behaviour of boron (B) and phosphorus (P) dopant atoms. The APT results demonstrate that raising the annealing temperature promotes growth and increased P concentration of the Si NCs. The data also shows that the thermal annealing does not promote the incorporation of B atoms into Si NCs. Instead, B atoms tend to locate at the interface between the Si NCs and SiO2matrix. The DFT calculations support the APT data and reveal that oxygen vacancies regulate Si NC growth and dopant distribution. This study provides the detailed microstructure of p-type, intrinsic, and n-type Si NCs with changing annealing temperature and highlights how B and P dopants preferentially locate with respect to the Si NCs embedded in the SiO2matrix with the aid of oxygen vacancies. These findings will be useful towards future optoelectronic applications.

5.
Phys Chem Chem Phys ; 22(4): 2276-2282, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31919485

RESUMO

The exceptionally low deformation potential is proposed as the key determinant for the high carrier mobility in α-phosphorene. This is related to its unique corrugated two-dimensional structure. Herein, we present a systematic first-principles density functional theory study on ten α-phosphorene isostructures by calculating the three key parameters of the carrier mobility. An electron mobility in the armchair direction with a value comparable to α-phosphorene is found in α-PAs, α-PCH, and α-AsCH, due to the structure-caused low deformation potential. The highest carrier mobility is predicted in α-graphane because of a two-orders-of-magnitude smaller deformation potential than the other isostructures. The low deformation potential can be correlated to the separation of charge carriers from neighbouring unit cells. This study highlights a feasible route to generating high mobility materials through deformation potential engineering.

6.
J Chem Phys ; 151(19): 194506, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31757144

RESUMO

A survey of published literature reveals a difference in the density of amorphous and crystalline solids (organic and inorganic) on the order of 10%-15%, whereas for metallic alloys, it is found to be typically less than 5%. Standard geometric models of atomic packing can account for the polymeric and inorganic glasses without requiring changes in interatomic separations (bond lengths). By contrast, the relatively small difference in density between crystalline and glassy metals (and metallic alloys) implies variations in interatomic separations due to merging orbitals giving rise to reduced atomic volumes. To test this hypothesis, quantum density functional theory computations were carried out on ordered and irregular clusters of aluminum. The results point to decreasing interatomic distances with decreasing coordination, from which one can deduce that the geometrical method of random hard sphere packing significantly underestimates the densities of amorphous metallic alloys.

7.
Microsc Microanal ; 25(2): 524-531, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30773161

RESUMO

Covering a broad optical spectrum, ternary InxGa1-xAs nanowires, grown by bottom-up methods, have been receiving increasing attention due to the tunability of the bandgap via In composition modulation. However, inadequate knowledge about the correlation between growth and properties restricts our ability to take advantage of this phenomenon for optoelectronic applications. Here, three different InGaAs nanowires were grown under different experimental conditions and atom probe tomography was used to quantify their composition, allowing the direct observation of the nanowire composition associated with the different growth conditions.

8.
Nat Commun ; 15(1): 1707, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402258

RESUMO

Phase instability poses a serious challenge to the commercialization of formamidinium lead iodide (FAPbI3)-based solar cells and optoelectronic devices. Here, we combine density functional theory and machine learning molecular dynamics simulations, to investigate the mechanism driving the undesired α-δ phase transition of FAPbI3. Prevalent iodine vacancies and interstitials can significantly expedite the structural transition kinetics by inducing robust covalency during transition states. Extrinsically, the detrimental roles of atmospheric moisture and oxygen in degrading the FAPbI3 perovskite phase are also rationalized. Significantly, we discover the compositional design principles by categorizing that A-site engineering primarily governs thermodynamics, whereas B-site doping can effectively manipulate the kinetics of the phase transition in FAPbI3, highlighting lanthanide ions as promising B-site substitutes. A-B mixed doping emerges as an efficient strategy to synergistically stabilize α-FAPbI3, as experimentally demonstrated by substantially higher initial optoelectronic characteristics and significantly enhanced phase stability in Cs-Eu doped FAPbI3 as compared to its Cs-doped counterpart. This study provides scientific guidance for the design and optimization of long-term stable FAPbI3-based solar cells and other optoelectronic devices through defect control and synergetic composition engineering.

9.
J Phys Chem Lett ; 14(12): 2950-2957, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36930821

RESUMO

Oxygen ingression has been shown to substantially decrease the carrier lifetime of Sn-based perovskites, behind which the mechanism remains yet unknown. Our first-principles calculations reveal that in prototypical MASnI3 (MA = CH3NH3), oxygen by itself is not a recombination center. Instead, it tends to form substitutional OI through combining with native I vacancies (VI) and remarkably increases the original recombination rate of VI by 2-3 orders of magnitude. This rationalizes the experimentally observed sharp decline of carrier lifetime in perovskites exposed to air. The significantly enhanced carrier recombination is due to a smaller electron capture barrier of OI, resulting from lattice strengthening and the suppressed structural relaxation upon electron capture. These insights offer a route to further improve device performance via anion engineering in broad Sn-based perovskite optoelectronics operating in ambient air. Moreover, our results highlight the important role of lattice relaxation for nonradiative carrier capture in materials in general.

10.
Nat Commun ; 13(1): 335, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039489

RESUMO

Plastic deformation in ceramic materials is normally only observed in nanometre-sized samples. However, we have observed high levels of plasticity (>50% plastic strain) and excellent elasticity (6% elastic strain) in perovskite oxide Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3, under compression along <100>pc pillars up to 2.1 µm in diameter. The extent of this deformation is much higher than has previously been reported for ceramic materials, and the sample size at which plasticity is observed is almost an order of magnitude larger. Bending tests also revealed over 8% flexural strain. Plastic deformation occurred by slip along {110} <1[Formula: see text]0 > . Calculations indicate that the resulting strain gradients will give rise to giant flexoelectric polarization. First principles models predict that a high concentration of oxygen vacancies weaken the covalent/ionic bonds, giving rise to the unexpected plasticity. Mechanical testing on oxygen vacancies-rich Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 confirmed this prediction. These findings will facilitate the design of plastic ceramic materials and the development of flexoelectric-based nano-electromechanical systems.

11.
J Phys Chem Lett ; 12(43): 10677-10683, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34709819

RESUMO

Identification and passivation of defect-induced electron-hole recombination centers are currently crucial for improving the efficiency of hybrid perovskite solar cells. Besides general intrinsic defects, experimental reports have indicated that hydrogen interstitials are also abundant in hybrid perovskite layers; however, few reports have evaluated the effect of such defects on the charge carrier recombination and device efficiencies. Here, we reveal that under I-poor synthesis conditions, the negatively charged monatomic hydrogen interstitial, Hi-, will form in the prototypical CH3NH3PbI3 perovskite layer, acting as a detrimental deep-level defect, which leads to efficient electron-hole recombination and lowers the cell performance. We further rationalize that Br doping can mitigate the large atomic displacement caused by the presence of Hi- and hence suppress the formation of the deep localized state. The results advance the knowledge of the deep-level defects in hybrid perovskites and provide useful information for enhancing solar cell performance by defect engineering.

12.
ACS Appl Mater Interfaces ; 12(52): 58140-58148, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33375795

RESUMO

Colossal saturation magnetization and giant coercivity are realized in MoS2 single crystals doped with Nb and/or Co using an ion implantation method. Magnetic measurements have demonstrated that codoping with 2 at % Nb and 4 at % Co invoked a "giant" coercivity, as high as 9 kOe at 100 K. Doping solely with 5 at % Nb induces a "colossal" magnetization of 1800 emu/cm3 at 5 K, which is higher than that of metallic Co. The high magnetization is due to the formation of Nb-rich defect complexes, as confirmed by first-principles calculations. It is proposed that the high coercivity is due to the combined effects of strong directional exchange coupling induced by the Nb and Co doping and pinning effects from defects within the layered structure. This high magnetization mechanism is also applicable to 2D materials with bilayers or few layers of thickness, as indicated by first-principles calculations. Hence, this work opens a potential pathway for the development of 2D high-performance magnetic materials.

13.
Nanoscale Adv ; 1(3): 1117-1123, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133211

RESUMO

Two-dimensional auxetic materials with negative Poisson's ratio expand in response to a tensile strain in cross-section. Such counter-intuitive behaviours have been mainly ascribed to concave structures with ideal rigid ball-stick models. Here, based on first-principles calculations, we systematically analyze the mechanical behaviours of three life-boat structured two-dimensional (2D) materials and report two new auxetic materials: δ-arsenic and δ-graphane. The calculated Poisson's ratio values are correlated with Young's modulus, cohesive energy, and valence shell electron pair repulsion of isostructures. Combining with previous research, we provide a self-consistent explanation of the origin of the 2D in-plane negative Poisson's ratio and an algorithmic route to discover new auxetic materials by comparing the energy restored in bond rotation and stretch.

14.
ACS Appl Mater Interfaces ; 11(46): 43781-43788, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31660716

RESUMO

High magnetization materials are in great demand for the fabrication of advanced multifunctional magnetic devices. Notwithstanding this demand, the development of new materials with these attributes has been relatively slow. In this work, we propose a new strategy to achieve high magnetic moments above room temperature. Our material engineering approach invoked the embedding of magnetic nanoclusters in an oxide matrix. By precisely controlling pulsed laser deposition parameters, Co nanoclusters are formed in a 5 at % Co-TiO2 film. The presence of these nanoclusters was confirmed using transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray absorption fine structure. The film exhibits a very high saturation magnetization of 99 emu/cm3. Detailed studies using X-ray magnetic circular dichroism confirm that Co has an enhanced magnetic moment of 3.5 µB/atom, while the Ti and O also contribute to the magnetic moments. First-principles calculations supported our hypothesis that the metallic Co nanoclusters surrounded by a TiO2 matrix can exhibit both large spin and orbital moments. Moreover, a quantum confinement effect results in a high Curie temperature for the embedded Co nanoclusters. These findings reveal that 1-2 nm nanoclusters that are quantum confined can exhibit very large magnetic moments above room temperature, representing a promising advance for the design of new high magnetization materials.

15.
Adv Mater ; 29(31)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628253

RESUMO

III-V ternary InGaAs nanowires have great potential for electronic and optoelectronic device applications; however, the 3D structure and chemistry at the atomic-scale inside the nanowires remain unclear, which hinders tailoring the nanowires for specific applications. Here, atom probe tomography is used in conjunction with a first-principles simulation to investigate the 3D structure and chemistry of InGaAs nanowires, and reveals i) the nanowires form a spontaneous core-shell structure with a Ga-enriched core and an In-enriched shell, due to different growth mechanisms in the axial and lateral directions; ii) the shape of the core evolves from hexagon into Reuleaux triangle and grows larger, which results from In outward and Ga inward interdiffusion occurring at the core-shell interface; and iii) the irregular hexagonal shell manifests an anisotropic growth rate on {112}A and {112}B facets. Accordingly, a model in terms of the core-shell shape and chemistry evolution is proposed, which provides fresh insights into the growth of these nanowires.

16.
Sci Rep ; 5: 8987, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25758232

RESUMO

Modulation of material physical and chemical properties through selective surface engineering is currently one of the most active research fields, aimed at optimizing functional performance for applications. The activity of exposed crystal planes determines the catalytic, sensory, photocatalytic, and electrochemical behavior of a material. In the research on nanomagnets, it opens up new perspectives in the fields of nanoelectronics, spintronics, and quantum computation. Herein, we demonstrate controllable magnetic modulation of α-MnO2 nanowires, which displayed surface ferromagnetism or antiferromagnetism, depending on the exposed plane. First-principles density functional theory calculations confirm that both Mn- and O-terminated α-MnO2 (1 1 0) surfaces exhibit ferromagnetic ordering. The investigation of surface-controlled magnetic particles will lead to significant progress in our fundamental understanding of functional aspects of magnetism on the nanoscale, facilitating rational design of nanomagnets. Moreover, we approved that the facet engineering pave the way on designing semiconductors possessing unique properties for novel energy applications, owing to that the bandgap and the electronic transport of the semiconductor can be tailored via exposed surface modulations.

17.
Sci Rep ; 4: 7273, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25449669

RESUMO

A complete phase diagram and its corresponding physical properties are essential prerequisites to understand the underlying mechanism of iron-based superconductivity. For the structurally simplest 11 (FeSeTe) system, earlier attempts using bulk samples have not been able to do so due to the fabrication difficulties. Here, thin FeSe(x)Te(1-x) films with the Se content covering the full range (0 ≤ x ≤ 1) were fabricated by using pulsed laser deposition method. Crystal structure analysis shows that all films retain the tetragonal structure in room temperature. Significantly, the highest superconducting transition temperature (T(C) = 20 K) occurs in the newly discovered domain, i.e., 0.6 ≤ x ≤ 0.8. The single-phased superconducting dome for the full Se doping range is the first of its kind in iron chalcogenide superconductors. Our results present a new avenue to explore novel physics as well as to optimize superconductors.

18.
Ultramicroscopy ; 124: 96-101, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23142750

RESUMO

Atom probe tomography (APT) is capable of simultaneously revealing the chemical identities and three dimensional positions of individual atoms within a needle-shaped specimen, but suffers from a limited field-of-view (FOV), i.e., only the core of the specimen is effectively detected. Therefore, the capacity to analyze the full tip is crucial and much desired in cases that the shell of the specimen is also the region of interest. In this paper, we demonstrate that, in the analysis of III-V nanowires epitaxially grown from a substrate, the presence of the flat substrate positioned only micrometers away from the analyzed tip apex alters the field distribution and ion trajectories, which provides extra image compression that allows for the analysis of the entire specimen. An array of experimental results, including field desorption maps, elemental distributions, and crystallographic features clearly demonstrate the fact that the whole tip has been imaged, which is confirmed by electrostatic simulations.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia/métodos , Simulação por Computador
19.
Ultramicroscopy ; 132: 186-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23489910

RESUMO

Controllable doping of semiconductor nanowires is critical to realize their proposed applications, however precise and reliable characterization of dopant distributions remains challenging. In this article, we demonstrate an atomic-resolution three-dimensional elemental mapping of pristine semiconductor nanowires on growth substrates by using atom probe tomography to tackle this major challenge. This highly transferrable method is able to analyze the full diameter of a nanowire, with a depth resolution better than 0.17 nm thanks to an advanced reconstruction method exploiting the specimen's crystallography, and an enhanced chemical sensitivity of better than 8-fold increase in the signal-to-noise ratio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA