Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(12): 1684-1695, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38814586

RESUMO

ConspectusNeural interface technologies enable bidirectional communication between the nervous system and external instrumentation. Advancements in neural interface devices not only open new frontiers for neuroscience research, but also hold great promise for clinical diagnosis, therapy, and rehabilitation for various neurological disorders. However, the performance of current neural electrode devices, often termed neural probes, is far from satisfactory. Glial scarring, neuronal degeneration, and electrode degradation eventually cause the devices to lose their connection with the brain. To improve the chronic performance of neural probes, efforts need to be made on two fronts: enhancing the physiochemical properties of the electrode materials and mitigating the undesired host tissue response.In this Account, we discuss our efforts in developing silica-nanoparticle-based (SiNP) coatings aimed at enhancing neural probe electrochemical properties and promoting device-tissue integration. Our work focuses on three approaches:(1) SiNPs' surface texturization to enhance biomimetic protein coatings for promoting neural integration. Through covalent immobilization, SiNP introduces biologically relevant nanotopography to neural probe surfaces, enhancing neuronal cell attachments and inhibiting microglia. The SiNP base coating further increases the binding density and stability of bioactive molecules such as L1CAM and facilitates the widespread dissemination of biomimetic coatings. (2) Doping SiNPs into conductive polymer electrode coatings improves the electrochemical properties and stability. As neural interface devices are moving to subcellular sizes to escape the immune response and high electrode site density to increase spatial resolution, the electrode sites need to be very small. The smaller electrode size comes at the cost of a high electrode impedance, elevated thermal noise, and insufficient charge injection capacity. Electrochemically deposited conductive polymer films reduce electrode impedance but do not endure prolonged electrical cycling. When incorporated into conductive polymer coatings as a dopant, the SiNP provides structural support for the polymer thin films, significantly increasing their stability and durability. Low interfacial impedance maintained by the conducting polymer/SiNP composite is critical for extended electrode longevity and effective charge injection in chronic neural stimulation applications. (3) Porous nanoparticles are used as drug carriers in conductive polymer coatings for local drug/neurochemical delivery. When triggered by external electrical stimuli, drug molecules and neurochemicals can be released in a controlled manner. Such precise focal manipulation of cellular and vascular behavior enables us to probe brain circuitry and develop therapeutic applications.We foresee tremendous opportunities for further advancing the functionality of SiNP coatings by incorporating new nanoscale components and integrating the coating with other design strategies. With an enriched nanoscale toolbox and optimized design strategies, we can create customizable multifunctional and multimodal neural interfaces that can operate at multiple spatial levels and seamlessly integrate with the host tissue for extended applications.


Assuntos
Materiais Biocompatíveis , Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Nanopartículas/química , Materiais Biocompatíveis/química , Humanos , Animais , Propriedades de Superfície , Neurônios/metabolismo , Neurônios/citologia
2.
Am J Physiol Heart Circ Physiol ; 325(6): H1304-H1317, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37737733

RESUMO

In the spinal cord, glutamate serves as the primary excitatory neurotransmitter. Monitoring spinal glutamate concentrations offers valuable insights into spinal neural processing. Consequently, spinal glutamate concentration has the potential to emerge as a useful biomarker for conditions characterized by increased spinal neural network activity, especially when uptake systems become dysfunctional. In this study, we developed a multichannel custom-made flexible glutamate-sensing probe for the large-animal model that is capable of measuring extracellular glutamate concentrations in real time and in vivo. We assessed the probe's sensitivity and specificity through in vitro and ex vivo experiments. Remarkably, this developed probe demonstrates nearly instantaneous glutamate detection and allows continuous monitoring of glutamate concentrations. Furthermore, we evaluated the mechanical and sensing performance of the probe in vivo, within the pig spinal cord. Moreover, we applied the glutamate-sensing method using the flexible probe in the context of myocardial ischemia-reperfusion (I/R) injury. During I/R injury, cardiac sensory neurons in the dorsal root ganglion transmit excitatory signals to the spinal cord, resulting in sympathetic activation that potentially leads to fatal arrhythmias. We have successfully shown that our developed glutamate-sensing method can detect this spinal network excitation during myocardial ischemia. This study illustrates a novel technique for measuring spinal glutamate at different spinal cord levels as a surrogate for the spinal neural network activity during cardiac interventions that engage the cardio-spinal neural pathway.NEW & NOTEWORTHY In this study, we have developed a new flexible sensing probe to perform an in vivo measurement of spinal glutamate signaling in a large animal model. Our initial investigations involved precise testing of this probe in both in vitro and ex vivo environments. We accurately assessed the sensitivity and specificity of our glutamate-sensing probe and demonstrated its performance. We also evaluated the performance of our developed flexible probe during the insertion and compared it with the stiff probe during animal movement. Subsequently, we used this innovative technique to monitor the spinal glutamate signaling during myocardial ischemia and reperfusion that can cause fatal ventricular arrhythmias. We showed that glutamate concentration increases during the myocardial ischemia, persists during the reperfusion, and is associated with sympathoexcitation and increases in myocardial substrate excitability.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Suínos , Animais , Ácido Glutâmico/metabolismo , Medula Espinal , Coração , Arritmias Cardíacas , Traumatismo por Reperfusão Miocárdica/metabolismo
3.
Carbon N Y ; 188: 209-219, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36101831

RESUMO

Fabrication of heteroatom-doped graphene electrodes remains a challenging endeavor, especially on flexible substrates. Precise chemical and morphological control is even more challenging for patterned microelectrodes. We herein demonstrate a scalable process for directly generating micropatterns of heteroatom-doped porous graphene on polyimide with different backbones using a continuous-wave infrared laser. Conventional two-step polycondensation of 4,4'-oxydianiline with three different tetracarboxylic dianhydrides enabled the fabrication of fully aromatic polyimides with various internal linkages such as phenylene, trifluoromethyl or sulfone groups. Accordingly, we leverage this laser-induced polymer-to-doped-graphene conversion for fabricating electrically conductive microelectrodes with efficient utilization of heteroatoms (N-doped, F-doped, and S-doped). Tuning laser fluence enabled achieving electrical resistivity lower than ~13 Ω sq-1 for F-doped and N-doped graphene. Finally, our microelectrodes exhibit superior performance for electrochemical sensing of dopamine, one of the important neurotransmitters in the brain. Compared with carbon fiber microelectrodes, the gold standard in electrochemical dopamine sensing, our F-doped high surface area graphene microelectrodes demonstrated 3 order of magnitude higher sensitivity per unit area, detecting dopamine concentrations as low as 10 nM with excellent reproducibility. Hence, our approach is promising for facile fabrication of microelectrodes with superior capabilities for various electrochemical and sensing applications including early diagnosis of neurological disorders.

4.
Anal Chem ; 91(20): 12917-12927, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31512849

RESUMO

Dopamine (DA) is a monoamine neurotransmitter responsible for the maintenance of a variety of vital life functions. In vivo DA signaling occurs over multiple time scales, from subsecond phasic release due to dopamine neuron firing to tonic release responsible for long-term DA concentration changes over minutes to hours. Due to the complex, multifaceted nature of DA signaling, analytical sensing technology must be capable of recording DA from multiple locations and over multiple time scales. Decades of research has focused on improving in vivo detection capabilities for subsecond phasic DA, but the accurate detection of absolute resting DA levels in real time has proven challenging. We have developed a poly(3,4-ethylenedioxythiophene) (PEDOT)-based nanocomposite coating that exhibits excellent DA sensing capabilities for resting DA. PEDOT/functionalized carbon nanotube (PEDOT/CNT)-coated carbon fiber microelectrodes (CFEs) are capable of directly measuring resting DA using square wave voltammetry (SWV) with high sensitivity and selectivity. Incorporation of a PEDOT/CNT coating significantly increases the sensitivity for the detection of resting DA by a factor of 422. SWV measurements performed at PEDOT/CNT-functionalized CFEs implanted in the rat dorsal striatum reveal the absolute basal DA concentration to be 82 ± 6 nM. Systemic administration of the dopamine transporter inhibitor nomifensine increases resting DA to a maximum 207 ± 16 nM at 28 ± 2 min following injection. PEDOT/CNT was also functionalized onto individual gold electrode sites along silicon microelectrode arrays (MEAs) to produce a multisite DA sensing electrode. MEA implantation allows for the quantification of basal DA from different brain regions with excellent spatial resolution. SWV detection paired with PEDOT/CNT functionalization is highly adaptable and shows great promise for tonic DA detection with high spatial and temporal resolution.


Assuntos
Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/química , Corpo Estriado/metabolismo , Dopamina/análise , Técnicas Eletroquímicas/métodos , Microeletrodos , Nanotubos de Carbono , Polímeros/química , Animais , Masculino , Ratos , Ratos Sprague-Dawley
5.
Adv Funct Mater ; 28(12)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30467460

RESUMO

Implantable microelectrode arrays (MEAs) are important tools for investigating functional neural circuits and treating neurological diseases. Precise modulation of neural activity may be achieved by controlled delivery of neurochemicals directly from coatings on MEA electrode sites. In this study, a novel dual-layer conductive polymer/acid functionalized carbon nanotube (fCNT) microelectrode coating is developed to better facilitate the loading and controlled delivery of the neurochemical 6,7-dinitroquinoxaline-2,3-dione (DNQX). The base layer coating is consisted of poly(3,4-ethylenedioxythiophene/fCNT and the top layer is consisted of polypyrrole/fCNT/DNQX. The dual-layer coating is capable of both loading and electrically releasing DNQX and the release dynamic is characterized with fluorescence microscopy and mathematical modeling. In vivo DNQX release is demonstrated in rat somatosensory cortex. Sensory-evoked neural activity is immediately (<1s) and locally (<446 µm) suppressed by electrically triggered DNQX release. Furthermore, a single DNQX-loaded, dual-layer coating is capable of inducing effective neural inhibition for at least 26 times without observable degradation in efficacy. Incorporation of the novel drug releasing coating onto individual MEA electrodes offers many advantages over alternative methods by increasing spatial-temporal precision and improving drug selection flexibility without increasing the device's size.

6.
Biotechnol Bioeng ; 115(10): 2654-2667, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30011077

RESUMO

Despite significant interest in developing extracellular matrix (ECM)-inspired biomaterials to recreate native cell-instructive microenvironments, the major challenge in the biomaterial field is to recapitulate the complex structural and biophysical features of native ECM. These biophysical features include multiscale hierarchy, electrical conductivity, optimum wettability, and mechanical properties. These features are critical to the design of cell-instructive biomaterials for bioengineering applications such as skeletal muscle tissue engineering. In this study, we used a custom-designed film fabrication assembly, which consists of a microfluidic chamber to allow electrostatic charge-based self-assembly of oppositely charged polymer solutions forming a hydrogel fiber and eventually, a nanocomposite fibrous hydrogel film. The film recapitulates unidirectional hierarchical fibrous structure along with the conductive properties to guide initial alignment and myotube formation from cultured myoblasts. We combined high conductivity, and charge carrier mobility of graphene with biocompatibility of polysaccharides to develop graphene-polysaccharide nanocomposite fibrous hydrogel films. The incorporation of graphene in fibrous hydrogel films enhanced their wettability, electrical conductivity, tensile strength, and toughness without significantly altering their elastic properties (Young's modulus). In a proof-of-concept study, the mouse myoblast cells (C2C12) seeded on these nanocomposite fibrous hydrogel films showed improved spreading and enhanced myogenesis as evident by the formation of multinucleated myotubes, an early indicator of myogenesis. Overall, graphene-polysaccharide nanocomposite fibrous hydrogel films provide a potential biomaterial to promote skeletal muscle tissue regeneration.


Assuntos
Grafite/química , Hidrogéis/química , Dispositivos Lab-On-A-Chip , Membranas Artificiais , Fibras Musculares Esqueléticas/metabolismo , Nanocompostos/química , Polissacarídeos/química , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular , Camundongos , Fibras Musculares Esqueléticas/citologia , Molhabilidade
7.
J Nanobiotechnology ; 16(1): 13, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29433522

RESUMO

BACKGROUND: Oxidative stress acts as a trigger in the course of neurodegenerative diseases and neural injuries. An antioxidant-based therapy can be effective to ameliorate the deleterious effects of oxidative stress. Resveratrol (RSV) has been shown to be effective at removing excess reactive oxygen species (ROS) or reactive nitrogen species generation in the central nervous system (CNS), but the delivery of RSV into the brain through systemic administration is inefficient. Here, we have developed a RSV delivery vehicle based on polylactic acid (PLA)-coated mesoporous silica nanoparticles (MSNPs), conjugated with a ligand peptide of low-density lipoprotein receptor (LDLR) to enhance their transcytosis across the blood-brain barrier (BBB). RESULTS: Resveratrol was loaded into MSNPs (average diameter 200 nm, pore size 4 nm) at 16 µg/mg (w/w). As a gatekeeper, the PLA coating prevented the RSV burst release, while ROS was shown to trigger the drug release by accelerating PLA degradation. An in vitro BBB model with a co-culture of rat brain microvascular endothelial cells (RBECs) and microglia cells using Transwell chambers was established to assess the RSV delivery across BBB. The conjugation of LDLR ligand peptides markedly enhanced the migration of MSNPs across the RBECs monolayer. RSV could be released and effectively reduce the activation of the microglia cells stimulated by phorbol-myristate-acetate or lipopolysaccharide. CONCLUSIONS: These ROS responsive LDLR peptides conjugated PLA-coated MSNPs have great potential for oxidative stress therapy in CNS.


Assuntos
Antioxidantes/administração & dosagem , Barreira Hematoencefálica/metabolismo , Preparações de Ação Retardada/química , Poliésteres/química , Receptores de LDL/química , Dióxido de Silício/química , Estilbenos/administração & dosagem , Animais , Antioxidantes/farmacocinética , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Nanopartículas/química , Peptídeos/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Estilbenos/farmacocinética
8.
J Mater Chem B ; 12(22): 5535-5550, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38747002

RESUMO

Invasive neural implants allow for high-resolution bidirectional communication with the nervous tissue and have demonstrated the ability to record neural activity, stimulate neurons, and sense neurochemical species with high spatial selectivity and resolution. However, upon implantation, they are exposed to a foreign body response which can disrupt the seamless integration of the device with the native tissue and lead to deterioration in device functionality for chronic implantation. Modifying the device surface by incorporating bioactive coatings has been a promising approach to camouflage the device and improve integration while maintaining device performance. In this work, we explored the novel application of a chondroitin sulfate (CS) based hydrophilic coating, with anti-fouling and neurite-growth promoting properties for neural recording electrodes. CS-coated samples exhibited significantly reduced protein-fouling in vitro which was maintained for up to 4-weeks. Cell culture studies revealed a significant increase in neurite attachment and outgrowth and a significant decrease in microglia attachment and activation for the CS group as compared to the control. After 1-week of in vivo implantation in the mouse cortex, the coated probes demonstrated significantly lower biofouling as compared to uncoated controls. Like the in vitro results, increased neuronal population (neuronal nuclei and neurofilament) and decreased microglial activation were observed. To assess the coating's effect on the recording performance of silicon microelectrodes, we implanted coated and uncoated electrodes in the mouse striatum for 1 week and performed impedance and recording measurements. We observed significantly lower impedance in the coated group, likely due to the increased wettability of the coated surface. The peak-to-peak amplitude and the noise floor levels were both lower in the CS group compared to the controls, which led to a comparable signal-to-noise ratio between the two groups. The overall single unit yield (% channels recording a single unit) was 74% for the CS and 67% for the control group on day 1. Taken together, this study demonstrates the effectiveness of the polysaccharide-based coating in reducing biofouling and improving biocompatibility for neural electrode devices.


Assuntos
Sulfatos de Condroitina , Materiais Revestidos Biocompatíveis , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Animais , Camundongos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Propriedades de Superfície , Neurônios/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Eletrodos Implantados
9.
Adv Sci (Weinh) ; 11(27): e2308212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38430532

RESUMO

Substantial evidence has shown that the Circadian Locomotor Output Cycles Kaput (Clock) gene is a core transcription factor of circadian rhythms that regulates dopamine (DA) synthesis. To shed light on the mechanism of this interaction, flexible multielectrode arrays (MEAs) are developed that can measure both DA concentrations and electrophysiology chronically. The dual functionality is enabled by conducting polymer PEDOT doped with acid-functionalized carbon nanotubes (CNT). The PEDOT/CNT microelectrode coating maintained stable electrochemical impedance and DA detection by square wave voltammetry for 4 weeks in vitro. When implanted in wild-type (WT) and Clock mutation (MU) mice, MEAs measured tonic DA concentration and extracellular neural activity with high spatial and temporal resolution for 4 weeks. A diurnal change of DA concentration in WT is observed, but not in MU, and a higher basal DA concentration and stronger cocaine-induced DA increase in MU. Meanwhile, striatal neuronal firing rate is found to be positively correlated with DA concentration in both animal groups. These findings offer new insights into DA dynamics in the context of circadian rhythm regulation, and the chronically reliable performance and dual measurement capability of this technology hold great potential for a broad range of neuroscience research.


Assuntos
Proteínas CLOCK , Dopamina , Nanotubos de Carbono , Animais , Dopamina/metabolismo , Camundongos , Nanotubos de Carbono/química , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Microeletrodos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Polímeros/química , Polímeros/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Masculino
10.
Adv Healthc Mater ; 13(3): e2301221, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916912

RESUMO

Vascular damage and reduced tissue perfusion are expected to majorly contribute to the loss of neurons or neural signals around implanted electrodes. However, there are limited methods of controlling the vascular dynamics in tissues surrounding these implants. This work utilizes conducting polymer poly(ethylenedioxythiophene) and sulfonated silica nanoparticle composite (PEDOT/SNP) to load and release a vasodilator, sodium nitroprusside, to controllably dilate the vasculature around carbon fiber electrodes (CFEs) implanted in the mouse cortex. The vasodilator release is triggered via electrical stimulation and the amount of release increases with increasing electrical pulses. The vascular dynamics are monitored in real-time using two-photon microscopy, with changes in vessel diameters quantified before, during, and after the release of the vasodilator into the tissues. This work observes significant increases in vessel diameters when the vasodilator is electrically triggered to release, and differential effects of the drug release on vessels of different sizes. In conclusion, the use of nanoparticle reservoirs in conducting polymer-based drug delivery platforms enables the controlled delivery of vasodilator into the implant environment, effectively altering the local vascular dynamics on demand. With further optimization, this technology could be a powerful tool to improve the neural electrode-tissue interface and study neurovascular coupling.


Assuntos
Nanopartículas , Vasodilatadores , Camundongos , Animais , Dióxido de Silício , Polímeros/farmacologia , Eletrodos Implantados , Encéfalo/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia
11.
ACS Appl Mater Interfaces ; 16(31): 40570-40580, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39078097

RESUMO

In vivo glutamate sensing has provided valuable insight into the physiology and pathology of the brain. Electrochemical glutamate biosensors, constructed by cross-linking glutamate oxidase onto an electrode and oxidizing H2O2 as a proxy for glutamate, are the gold standard for in vivo glutamate measurements for many applications. While glutamate sensors have been employed ubiquitously for acute measurements, there are almost no reports of long-term, chronic glutamate sensing in vivo, despite demonstrations of glutamate sensors lasting for weeks in vitro. To address this, we utilized a platinum electrode with nanometer-scale roughness (nanoPt) to improve the glutamate sensors' sensitivity and longevity. NanoPt improved the GLU sensitivity by 67.4% and the sensors were stable in vitro for 3 weeks. In vivo, nanoPt glutamate sensors had a measurable signal above a control electrode on the same array for 7 days. We demonstrate the utility of the nanoPt sensors by studying the effect of traumatic brain injury on glutamate in the rat striatum with a flexible electrode array and report measurements of glutamate taken during the injury itself. We also show the flexibility of the nanoPt platform to be applied to other oxidase enzyme-based biosensors by measuring γ-aminobutyric acid in the porcine spinal cord. NanoPt is a simple, effective way to build high sensitivity, robust biosensors harnessing enzymes to detect neurotransmitters in vivo.


Assuntos
Aminoácido Oxirredutases , Técnicas Biossensoriais , Ácido Glutâmico , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Animais , Ácido Glutâmico/análise , Ácido Glutâmico/química , Ratos , Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/metabolismo , Eletrodos , Platina/química , Suínos , Lesões Encefálicas Traumáticas/metabolismo , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/química , Ratos Sprague-Dawley , Masculino , Galvanoplastia
12.
Adv Healthc Mater ; : e2302362, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563704

RESUMO

Cerebral neural electronics play a crucial role in neuroscience research with increasing translational applications such as brain-computer interfaces for sensory input and motor output restoration. While widely utilized for decades, the understanding of the cellular mechanisms underlying this technology remains limited. Although two-photon microscopy (TPM) has shown great promise in imaging superficial neural electrodes, its application to deep-penetrating electrodes is technically difficult. Here, a novel device integrating transparent microelectrode arrays with glass microprisms, enabling electrophysiology recording and stimulation alongside TPM imaging across all cortical layers in a vertical plane, is introduced. Tested in Thy1-GCaMP6 mice for over 4 months, the integrated device demonstrates the capability for multisite electrophysiological recording/stimulation and simultaneous TPM calcium imaging. As a proof of concept, the impact of microstimulation amplitude, frequency, and depth on neural activation patterns is investigated using the setup. With future improvements in material stability and single unit yield, this multimodal tool greatly expands integrated electrophysiology and optical imaging from the superficial brain to the entire cortical column, opening new avenues for neuroscience research and neurotechnology development.

13.
Microsyst Nanoeng ; 10: 91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947533

RESUMO

Targeted delivery of neurochemicals and biomolecules for neuromodulation of brain activity is a powerful technique that, in addition to electrical recording and stimulation, enables a more thorough investigation of neural circuit dynamics. We have designed a novel, flexible, implantable neural probe capable of controlled, localized chemical stimulation and electrophysiology recording. The neural probe was implemented using planar micromachining processes on Parylene C, a mechanically flexible, biocompatible substrate. The probe shank features two large microelectrodes (chemical sites) for drug loading and sixteen small microelectrodes for electrophysiology recording to monitor neuronal response to drug release. To reduce the impedance while keeping the size of the microelectrodes small, poly(3,4-ethylenedioxythiophene) (PEDOT) was electrochemically coated on recording microelectrodes. In addition, PEDOT doped with mesoporous sulfonated silica nanoparticles (SNPs) was used on chemical sites to achieve controlled, electrically-actuated drug loading and releasing. Different neurotransmitters, including glutamate (Glu) and gamma-aminobutyric acid (GABA), were incorporated into the SNPs and electrically triggered to release repeatedly. An in vitro experiment was conducted to quantify the stimulated release profile by applying a sinusoidal voltage (0.5 V, 2 Hz). The flexible neural probe was implanted in the barrel cortex of the wild-type Sprague Dawley rats. As expected, due to their excitatory and inhibitory effects, Glu and GABA release caused a significant increase and decrease in neural activity, respectively, which was recorded by the recording microelectrodes. This novel flexible neural probe technology, combining on-demand chemical release and high-resolution electrophysiology recording, is an important addition to the neuroscience toolset used to dissect neural circuitry and investigate neural network connectivity.

14.
Biomed Microdevices ; 15(3): 531-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23420190

RESUMO

Integrating PDMS channels and chips containing pre-functionalized biosensors into microfluidic devices with irreversible sealing has been challenging because the integration process requires use of an O2 plasma treatment that usually destroys the biosensors. In this study, we examined the usefulness of introducing a shadow mask into the process as a method of protecting the pre-functionalized biosensors. Single nanowire sensors were pre-functionalized with fluorescently labeled biomolecules and then subjected to O2 plasma with and without the shadow mask. Results from the two groups were then compared. Those sensors without a shadow mask were destroyed, giving the sensor an infinite resistance and reduced fluorescence intensity. In contrast, the sensors with the shadow mask were protected and exhibited little changes in the resistance and fluorescence intensity. Then two different nanowires, aptamers incorporated polypyrrole nanowire (entrapment) and antibodies immobilized polyaniline nanowire (surface covalent binding), were used to investigate their detection performance before and after the plasma treatment in the presence of shadow mask. The protected samples showed a good sensitivity to the targets with a slight reduction in response compared with the as-prepared samples. After the O2 plasma treatment, the microfluidic channels were integrated with single nanowire biosensors. This microfluidic biosensor showed a high sensitivity with about ~0.5 % change in conductance at the lowest IgE protein concentration of 10 pM.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nanofios , Animais , Corantes Fluorescentes/química , Imunoglobulina E/análise , Imunoglobulina G/análise , Oxigênio/química , Polímeros/química , Pirróis/química
15.
Micromachines (Basel) ; 14(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36838023

RESUMO

The number of people aged 12 years and older using illicit drugs reached 59.3 million in 2020, among which 5.2 million are cocaine users based on the national data. In order to fully understand cocaine addiction and develop effective therapies, a tool is needed to reliably measure real-time cocaine concentration and neural activity in different regions of the brain with high spatial and temporal resolution. Integrated biochemical sensing devices based upon flexible microelectrode arrays (MEA) have emerged as a powerful tool for such purposes; however, MEAs suffer from undesired biofouling and inflammatory reactions, while those with immobilized biologic sensing elements experience additional failures due to biomolecule degradation. Aptasensors are powerful tools for building highly selective sensors for analytes that have been difficult to detect. In this work, DNA aptamer-based electrochemical cocaine sensors were integrated on flexible MEAs and protected with an antifouling zwitterionic poly (sulfobetaine methacrylate) (PSB) coating, in order to prevent sensors from biofouling and degradation by the host tissue. In vitro experiments showed that without the PSB coating, both adsorption of plasma protein albumin and exposure to DNase-1 enzyme have detrimental effects on sensor performance, decreasing signal amplitude and the sensitivity of the sensors. Albumin adsorption caused a 44.4% sensitivity loss, and DNase-1 exposure for 24 hr resulted in a 57.2% sensitivity reduction. The PSB coating successfully protected sensors from albumin fouling and DNase-1 enzyme digestion. In vivo tests showed that the PSB coated MEA aptasensors can detect repeated cocaine infusions in the brain for 3 hrs after implantation without sensitivity degradation. Additionally, the same MEAs can record electrophysiological signals at different tissue depths simultaneously. This novel flexible MEA with integrated cocaine sensors can serve as a valuable tool for understanding the mechanisms of cocaine addiction, while the PSB coating technology can be generalized to improve all implantable devices suffering from biofouling and inflammatory host responses.

16.
Biomaterials ; 302: 122326, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716282

RESUMO

We developed a nanoparticle base layer technology capable of maintaining the bioactivity of protein-based neural probe coating intended to improve neural recording quality. When covalently bound on thiolated nanoparticle (TNP) modified surfaces, neural adhesion molecule L1 maintained bioactivity throughout 8 weeks of dry storage at room temperature, while those bound to unmodified surfaces lost 66% bioactivity within 3 days. We tested the TNP + L1 coating in mouse brains on two different neural electrode arrays after two different dry storage durations (3 and 28 days). The results show that dry-stored coating is as good as the freshly prepared, and even after 28 days of storage, the number of single units per channel and signal-to-noise ratio of the TNP + L1 coated arrays were significantly higher by 32% and 40% respectively than uncoated controls over 16 weeks. This nanoparticle base layer approach enables the dissemination of biomolecule-functionalized neural probes to users worldwide and may also benefit a broad range of applications that rely on surface-bound biomolecules.


Assuntos
Biomimética , Sistema Nervoso , Camundongos , Animais , Proteínas , Materiais Revestidos Biocompatíveis
17.
Bioengineering (Basel) ; 10(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37370578

RESUMO

The demand for electrically insulated microwires and microfibers in biomedical applications is rapidly increasing. Polymer protective coatings with high electrical resistivity, good chemical resistance, and a long shelf-life are critical to ensure continuous device operation during chronic applications. As soft and flexible electrodes can minimize mechanical mismatch between tissues and electronics, designs based on flexible conductive microfibers, such as carbon nanotube (CNT) fibers, and soft polymer insulation have been proposed. In this study, a continuous dip-coating approach was adopted to insulate meters-long CNT fibers with hydrogenated nitrile butadiene rubber (HNBR), a soft and rubbery insulating polymer. Using this method, 4.8 m long CNT fibers with diameters of 25-66 µm were continuously coated with HNBR without defects or interruptions. The coated CNT fibers were found to be uniform, pinhole free, and biocompatible. Furthermore, the HNBR coating had better high-temperature tolerance than conventional insulating materials. Microelectrodes prepared using the HNBR-coated CNT fibers exhibited stable electrochemical properties, with a specific impedance of 27.0 ± 9.4 MΩ µm2 at 1.0 kHz and a cathodal charge storage capacity of 487.6 ± 49.8 mC cm-2. Thus, the developed electrodes express characteristics that made them suitable for use in implantable medical devices for chronic in vivo applications.

18.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993301

RESUMO

Myocardial ischemia-reperfusion (IR) can cause ventricular arrhythmias and sudden cardiac death via sympathoexcitation. The spinal cord neural network is crucial in triggering these arrhythmias and evaluating its neurotransmitter activity during IR is critical for understanding ventricular excitability control. To assess the real-time in vivo spinal neural activity in a large animal model, we developed a flexible glutamate-sensing multielectrode array. To record the glutamate signaling during IR injury, we inserted the probe into the dorsal horn of the thoracic spinal cord at the T2-T3 where neural signals generated by the cardiac sensory neurons are processed and provide sympathoexcitatory feedback to the heart. Using the glutamate sensing probe, we found that the spinal neural network was excited during IR, especially after 15 mins, and remained elevated during reperfusion. Higher glutamate signaling was correlated with the reduction in the cardiac myocyte activation recovery interval, showing higher sympathoexcitation, as well as dispersion of the repolarization which is a marker for increased risk of arrhythmias. This study illustrates a new technique for measuring the spinal glutamate at different spinal cord levels as a surrogate for the spinal neural network activity during cardiac interventions that engage the cardio-spinal neural pathway.

19.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711655

RESUMO

Real-time multi-channel measurements of tonic serotonin (5-hydroxytryptamine, 5-HT) concentrations across different brain regions are of utmost importance to the understanding of 5-HT’s role in anxiety, depression, and impulse control disorders, which will improve the diagnosis and treatment of these neuropsychiatric illnesses. Chronic sampling of 5-HT is critical in tracking disease development as well as the time course of pharmacological treatments. Despite their value, in vivo chronic multi-site measurements of 5-HT have not been reported. To fill this technological gap, we batch fabricated implantable glassy carbon (GC) microelectrode arrays (MEAs) on a flexible SU-8 substrate to provide an electrochemically stable and biocompatible device/tissue interface. Then, to achieve multi-site detection of tonic 5-HT concentrations, we incorporated the poly(3,4-ethylenedioxythiophene)/functionalized carbon nanotube (PEDOT/CNT) coating on the GC microelectrodes in combination with a new square wave voltammetry (SWV) approach, optimized for selective 5-HT measurement. In vitro , the PEDOT/CNT coated GC microelectrodes achieved high sensitivity towards 5-HT, good fouling resistance in the presence of 5-HT, and excellent selectivity towards the most common neurochemical interferents. In vivo , our PEDOT/CNT-coated GC MEAs were able to successfully detect basal 5-HT concentrations at different locations of the CA2 hippocampal region of mice in both anesthetized and awake head-fixed conditions. Furthermore, the implanted PEDOT/CNT-coated MEA achieved stable detection of tonic 5-HT concentrations for one week. Finally, histology data in the hippocampus shows reduced tissue damage and inflammatory responses compared to stiff silicon probes. To the best of our knowledge, this PEDOT/CNT-coated GC MEA is the first implantable flexible multisite sensor capable of chronic in vivo multi-site sensing of tonic 5-HT. This implantable MEA can be custom-designed according to specific brain region of interests and research questions, with the potential to combine electrophysiology recording and multiple analyte sensing to maximize our understanding of neurochemistry. Highlights: PEDOT/CNT-coated GC microelectrodes enabled sensitive and selective tonic detection of serotonin (5-HT) using a new square wave voltammetry (SWV) approach PEDOT/CNT-coated GC MEAs achieved multi-site in vivo 5-HT tonic detection for one week. Flexible MEAs lead to reduced tissue damage and inflammation compared to stiff silicon probes.

20.
Biosens Bioelectron ; 230: 115242, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989659

RESUMO

Chronic sampling of tonic serotonin (5-hydroxytryptamine, 5-HT) concentrations in the brain is critical for tracking neurological disease development and the time course of pharmacological treatments. Despite their value, in vivo chronic multi-site measurements of tonic 5-HT have not been reported. To fill this technological gap, we batch-fabricated implantable glassy carbon (GC) microelectrode arrays (MEAs) onto a flexible SU-8 substrate to provide an electrochemically stable and biocompatible device/tissue interface. To achieve detection of tonic 5-HT concentrations, we applied a poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) electrode coating and optimized a square wave voltammetry (SWV) waveform for selective 5-HT measurement. In vitro, the PEDOT/CNT-coated GC microelectrodes achieved high sensitivity to 5-HT, good fouling resistance, and excellent selectivity against the most common neurochemical interferents. In vivo, our PEDOT/CNT-coated GC MEAs successfully detected basal 5-HT concentrations at different locations within the CA2 region of the hippocampus of both anesthetized and awake mice. Furthermore, the PEDOT/CNT-coated MEAs were able to detect tonic 5-HT in the mouse hippocampus for one week after implantation. Histology reveals that the flexible GC MEA implants caused less tissue damage and reduced inflammatory response in the hippocampus compared to commercially available stiff silicon probes. To the best of our knowledge, this PEDOT/CNT-coated GC MEA is the first implantable, flexible sensor capable of chronic in vivo multi-site sensing of tonic 5-HT.


Assuntos
Técnicas Biossensoriais , Serotonina , Camundongos , Animais , Microeletrodos , Polímeros/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA